

Rare Decays in Kaons and Muons

Monica Tecchio
University of Michigan

XXXIV Physics in Collision Symposium Bloomington, IN Sept 19th, 2014

Why do we study Rare Decays?

 Standard Model (SM) is likely the lowenergy limit of a more fundamental theory with more degrees of freedom.
 Expect New Physics (NP)

- How to search for NP?
- Study physics processes that cannot proceed at tree level in SM but are dominated by loops (box,penguin) → loops can contain NP

Why do we study Rare Decays?

 Standard Model (SM) is likely the lowenergy limit of a more fundamental theory with more degrees of freedom.
 Expect New Physics (NP)

- How to search for NP?
- Study physics processes that cannot proceed at tree level in SM but are dominated by loops (box,penguin) → loops can contain NP
- 2. Study physics processes that violate SM conservations laws, lepton flavor and/or lepton number and look for tree level or higher order NP contribution

9/19/14

Why do we study Rare Decays?

 Standard Model (SM) is likely the lowenergy limit of a more fundamental theory with more degrees of freedom.
 Expect New Physics (NP)

- How to search for NP?
- Study physics processes that cannot proceed at tree level in SM but are dominated by loops (box,penguin) → loops can contain NP
- 2. Study physics processes that violate SM conservations laws, like lepton flavor and/or lepton number and look for tree level or higher order NP contribution

Rare processes are sensitive to NP

Why do we study Rare Decays in kaons and muons?

- Availability of high intense beams \rightarrow high statistics samples
- Simple decay topologies → clean experimental signatures

Two kind of experimental approaches:

- 1. know where to look
 - Find observables where SM predictions are very accurate.
 - Measure these observable very precisely.
 - Extract NP if any deviation observed
- 2. just look for the implausible/impossible
 - If anything is seen, it must be NP

NEED STATE-OF-THE-ART DETECTORS

Rare Decays covered in this talk

- The kaon "golden" modes:
 - $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (NA62)
 - $K_L \rightarrow \pi^0 \sqrt{\nu}$ (KOTO)
- BR(K $^{\pm} \rightarrow \pi^{\mp} \mu \pm \mu \pm$) from NA48/2
- BR($K_S \rightarrow \mu^{\pm} \mu^{\mp}$) from LHCb
- BR($K_S \rightarrow \pi^0 \pi^0 \pi^0$) from KLOE

- Rare Muon Decays
 - $\mu^+ \rightarrow e^+ \gamma (MEG)$
 - $\mu^- + N \rightarrow e^- + N \text{ (Mu2e)}$

Kaon Golden Modes

• The two rare kaon decays, $K^+ \to \pi^+ \nu \overline{\nu}$ & $K_L \to \pi^0 \nu \overline{\nu}$, are FCNC processes, forbidden at tree level and dominated by one loop diagrams

- t quark intermediate states dominate (GIM suppression for u,c)
- long distance contributions are small
- relevant hadronic operator can be extracted from $K^+ \rightarrow \pi^0 e^+ v$
- Provide input to CKM unitarity triangle

Kaon Golden Modes and NP

Branching ratios theoretical prediction are good to 2-4% (excluding parametric uncertainty)

BR(K⁺
$$\rightarrow \pi^+ \nu \overline{\nu}$$
) = (7.81 ± 0.75 ± 0.29) × 10⁻¹¹
BR(K₁ $\rightarrow \pi^0 \nu \overline{\nu}$) = (2.43 ± 0.39 ± 0.06) × 10⁻¹¹

(Brod, Gorbhan, Stamou, PRD 83,0340030 (2011)

Direct measurements:

$$\begin{array}{ll} \mathsf{BR}(\mathsf{K}^+\!\!\to\!\!\pi^+\!\!\sqrt{\nu}\) = (17.3\!+\!11.5\!-\!10.5)\times 10^{-11} & (\mathsf{BNL}\;\mathsf{E787/E949:}\;\mathsf{PRL}\;\mathsf{101}\;(2008)\;\mathsf{191802}) \\ \mathsf{BR}(\mathsf{K}_L\!\!\to\!\!\pi^0\!\!\sqrt{\nu}) < 2.6\times 10^{-8} & (\mathsf{KEK}\;\mathsf{E391a:}\;\mathsf{PRD}\;\mathsf{81}\;(2010)\;\mathsf{072004}) \end{array}$$

Kaon Golden Modes and NP

Branching ratios theoretical prediction are good to 2-4% (excluding parametric uncertainty)

BR(K⁺
$$\rightarrow \pi^+ \nu \overline{\nu}$$
) = (7.81 ± 0.75 ± 0.29) x 10⁻¹¹
BR(K₁ $\rightarrow \pi^0 \nu \overline{\nu}$) = (2.43 ± 0.39 ± 0.06) x 10⁻¹¹

(Brod, Gorbhan, Stamou, PRD 83,0340030 (2011)

Direct measurements:

$$\begin{array}{ll} \mathsf{BR}(\mathsf{K}^+\!\!\to\!\!\pi^+\!\!\sqrt{\nu}\) = (17.3\!+\!11.5\!-\!10.5)\times 10^{-11} & (\mathsf{BNL}\;\mathsf{E787/E949:}\;\mathsf{PRL}\;\mathsf{101}\;(2008)\;\mathsf{191802}) \\ \mathsf{BR}(\mathsf{K}_L\!\!\to\!\!\pi^0\!\!\sqrt{\nu}) < 2.6\times 10^{-8} & (\mathsf{KEK}\;\mathsf{E391a:}\;\mathsf{PRD}\;\mathsf{81}\;(2010)\;\mathsf{072004}) \end{array}$$

 Several NP scenarios predicts sizeable deviation from SM: correlation between the two modes can help distinguish models

Search for $K_L \rightarrow \pi^0 \nu \nu$

• KOTO (K⁰ at Tokai) searches for $K_L \rightarrow \pi^0 \nu \nu$ at the 30 GeV/c

proton beam in JPARC, Japan

• Nothing into 2 γ + nothing!

- Use E391a experimental setup: |
 - Clean K_L beam (off-axis to lower n momentun below η production threshold)
 - Precisely shaped collimators to minimize halo particles
 - Highly segmented CsI calorimeter (KTeV) for γ detection
 - Hermetic veto system
- Phase I: Single Event Sensitivity (SES): 9x10⁻¹²
 - ⇒ observation at SM level
- Phase II: 10% measurement

KOTO Experimental Technique

- First physics run: May, 2013
 - Beam power:24kW(10% of design intensity)
 - Terminated after 100 h due to radiation accident in Hadron Hall
- Blind Analysis
- After "loose" selection of events with 2 clusters in CsI, events outside the box are well predicted

- First physics run: May, 2013
 - Beam power:24kW(10% of design intensity)
 - Terminated after 100 h due to radiation accident in Hadron Hall
- · Blind Analysis
- After "loose" selection of events with 2 clusters in CsI, events outside the box are well predicted

Events in upstream low rec. z region (0.1 $K_L \rightarrow \pi^0 v \overline{v}$ evts) are due to halo neutron interactions generating π^0

- First physics run: May, 2013
 - Beam power:24kW(10% of design intensity)
 - Terminated after 100 h due to radiation accident in Hadron Hall
- · Blind Analysis
- After "loose" selection of events with 2 clusters in CsI, events outside the box are well predicted

- Events in upstream low rec. z region (0.1 $K_L \to \pi^0 v \overline{v}$ evts) are due to halo neutron interactions generating π^0
- Events in low P_t region are due to $K_L \to \pi^+\pi^-\pi^0$ events with $\pi^+\pi^-$ going down the beam pipe (133 MeV/c kinematical limit)

- First physics run: May, 2013
 - Beam power:24kW(10% of design intensity)
 - Terminated after 100 h due to radiation accident in Hadron Hall
- Blind Analysis
- After "loose" selection of events with 2 clusters in CsI, events outside the box are well predicted

- Events in upstream low rec. z region (0.1 $K_L \to \pi^0 v \overline{v}$ evts) are due to halo neutron interactions generating π^0
- Events in low P_{t} region are due to $K_{L} \rightarrow \pi^{t}\pi^{-}\pi^{0}$ events with $\pi^{t}\pi^{-}$ going down the beam pipe (133 MeV/c kinematical limit)
- Events in high P_t downstream region are due to single halo neutrons generating two hadronic clusters in CsI.
 - most serious background (1.9±1.1 evt inside signal box)
 - modeled using special run with Al plate inserted in the beam core

$K_L \rightarrow \pi^0 \nu \overline{\nu}$ Result

Apply neural net cut to separate hadron from photon clusters using both cluster kinematical and shape variables.

Final background prediction inside signal region

BG source	#B <i>G</i>	
Hadron cluster events	0.18±0.15	
Kaon decay events	0.11±0.04	
Upstream events	0.06±0.06	
Sum	0.36± 0.16	

S.E.S. of the first physics
 run: 1.29×10⁻⁸ (E391a: 1.1×10⁻⁸)

 KOTO achieved similar sensitivity as E391a in only 100 hours of data taking!

$K_L \rightarrow \pi^0 v \overline{v}$ Result

 1 event found inside signal box after applying all cuts (with loose cuts: 2 evts vs 2.11±1.06 expected)

 Next physics runs in 2015. Aims at GN limit sensitivity by improving veto coverage and analysis to control background.

Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

- NA62 at SPS400 GeV/c proton beam, CERN
- 75 GeV/c unseparated hadron beam (6% kaon component)
- 4.8×10¹² K/year, acceptance ~10%
 ⇒ SES ~ 10⁻¹²
 - \Rightarrow 100 K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ in 2 yrs

NA62 Experimental Technique

• 92% of signal is separated from background just based on kinematics using $M_{miss}^2 = (P_K - P_{\pi})^2$

NA62 Experimental Technique

- 92% of signal is separated from background just based on kinematics using $M^2_{miss} = (P_K P_\pi)^2$ SIGNAL IDENTIFICATION
 - Measure K and pion momentum with high resolution in low material trackers (GTK +STRAW)

NA62 Experimental Technique

92% of signal is separated from background just based on kinematics using $M^2_{miss} = (P_K - P_{\pi})^2$

SIGNAL IDENTIFICATION

 Measure K and pion momentum with high resolution in low material trackers (GTK +STRAW)

BACKGROUND REJECTION

- Reject events with photons (LAV+SAC)
- $10^{-3} \pi \mu$ separation (RICH+LKr+MUV)
- K⁺ identification in had, beam (CEDAR)

NA62 Physics and Schedule

- Upcoming run (October-December 2014): commission detector with lower intensity beam. Likely reach SM sensitivity!
- Nominal intensity runs in 2015, 2016 and 2017 before LHC shutdown

 Planning for further physics measurements: real rare decay factory!

Decay	Physics	Present limit	NA62
π ⁺ μ +e -	LFV	1.3*10-11	0.7*10-12
π ⁺ μ ⁻ e +	LFV	5.2*10-10	0.7*10-12
π⁻μ ⁺e ⁺	LNV	5.0*10-10	0.7*10-12
π- e + e +	LNV	6.4*10-10	2.0*10-12
π-μ+μ+	LNV	1.1*10-9	0.4*10-12
μ ⁻ ν e + e +	LFV/LNV	2*10-8	4.0*10-12
e -νμ+μ+	LNV	No data	1.0*10-12
$\pi^{\scriptscriptstyle +}\chi^0$	New particle	$5.9*10-11 M_{\chi}0 = 0$	1.0*10-12
$\pi^{+}\chi\chi$	New particle	No data	1.0*10-12
$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle +}e^{\scriptscriptstyle -}v$	$\Delta S \neq \Delta Q$	1.2*10-8	1.0*10-11
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0*10-6	1.0*10-11
$\pi^{\scriptscriptstyle +}\gamma$	Angular momentum	2.3*10-9	1.0*10-11
μ ⁺ ν _h , ν _h \rightarrow νγ	Heavy neutrino	Limits up to M_{V_b} = 350 MeV/c ²	1.0*10-12
R_{K}	LU	(2.488 ± 0.010)*10 ⁻⁵	>*2 better
$\pi^{\scriptscriptstyle +}\gamma\gamma$	χ PT	< 500 events	10 ⁵ events
$\pi^0\pi^0$ e+v	χ PT	66000 events	O(106) events
$\pi^0\pi^0\mu^+\nu$	χ PT		O(10 ⁵) events

$$\textbf{K}^{\pm} {\longrightarrow} \pi^{\mp} \mu^{\pm} \mu^{\pm}$$

 LNV process mediated by Maiorana neutrino

- NA48/2 in 2003-2004 collected data with beams of K⁺+K⁻
- Normalize $K \rightarrow \pi \mu \mu$ sample to $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ to cancel many systematics

 In some LNV NP models, rate is close to experimental limit

ex: resonant enhancement if Maiorana neutrino has intermediate mass

$$m_{\pi} < m_{\nu} < m_{\kappa}$$

• Previous limit:

BR(
$$K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$$
)<3×10⁻⁹ @ 90 CL (BNL E865: PRL 85 (2000) 2450)

$$K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$$

Opposite-sign muons $(\pi^{\pm}\mu^{\pm}\mu^{\mp})$

Like-sign muons $(\pi^{\text{T}}\mu^{\text{t}}\mu^{\text{t}})$

- 52 candidates in signal region
- 52.6 ± 19.8 expected background

BR($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$)<1.1x10⁻⁹ @ 90 CL

(Phys. Lett. B 697 (2011), 107)

$K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$

Opposite-sign muons $(\pi^{\pm}\mu^{\pm}\mu^{\mp})$

Like-sign muons $(\pi^{\scriptscriptstyle T}\mu^{\scriptscriptstyle \pm}\mu^{\scriptscriptstyle \pm})$

- 52 candidates in signal region
- 52.6 ± 19.8 expected background

BR($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$)<1.1x10⁻⁹ @ 90 CL (Phys. Lett. B 697 (2011), 107)

NA62 will collect 10^{13} K and reach SES ~ 10^{-12}

$$K_S \rightarrow \pi^0 \pi^0 \pi^0$$

- $3\pi^0$ is a pure CP=-1 state
- Analogously to $K_L \to \pi^0 \pi^0$ (happy 50^{th} birthday!), $K_S \to \pi^0 \pi^0 \pi^0$ signals indirect CP violation in mixing and/or decay
- SM predicts BR($K_S \rightarrow 3\pi^0$) ~ 2×10^{-9}
- Never observed so far

- KLOE at Frascati DA⊕NE e⁺e⁻ collider with √s ~ m_φ = 1019.4 MeV
- Collected 8×10^9 ϕ decays (2×10^9 K_LK_S) between 2001 and 2005
- Unique K_s tagging using K_L signature of delayed energy cluster not associated to any track (" K_L crash")

$K_S \rightarrow \pi^0 \pi^0 \pi^0$ Selection

Signal:

 $K_S \rightarrow \pi^0 \pi^0 \pi^0$ signal using 6 γ

$$BR(K_S \to 3\pi^0) < 2.6x10^{-8} @ 90 CL$$

(Phys. Lett. B 723 (2013) 54)

Dominant background:

 $K_S \rightarrow 2\pi^0 + 2$ accidental/splitted clusters

Residual background:

 $K_L \rightarrow 3\pi^0$ plus $K_S \rightarrow \pi^+\pi^+$ faking K_L crash

$$K_S \rightarrow \mu^{\pm} \mu^{\mp}$$

- FCNC decay suppressed in SM
- Dominated by long distance contributions via 2γ intermediate state
- Short distance contributions (similar to K-> πvv) are smaller
- SM expectation: (5.0±1.5)×10⁻¹²
- Experimental limit:
 - BR($K_S \rightarrow \mu^{\pm} \mu^{\pm}$) < 3.1 × 10⁻⁷ [CERN S128, Phys.Letters B44 (1973)]

$K_S \rightarrow \mu^{\pm} \mu^{\mp}$

- FCNC decay suppressed in SM
- Dominated by long distance contributions via 2γ intermediate state
- Short distance contributions (similar to K-> πvv) are smaller
- SM expectation: (5.0±1.5)x10⁻¹²
- Experimental limit:
 - BR($K_S \rightarrow \mu^{\pm}\mu^{\pm}$) < 3.1 × 10⁻⁷ [CERN S128, Phys.Letters B44 (1973)]
- LHCb did a search based on 1 fb⁻¹ of data at \sqrt{s} = 7 TeV (~10¹³ K_s per fb⁻¹ within the acceptance)
- Use $K_S \rightarrow \pi^+\pi^-$ as normalization mode
- Blind analysis with signal region $492 < M_{uu} < 504 \text{ MeV/c}^2$
- BR($K_S \rightarrow \mu^+ \mu^-$) < 9x10⁻⁹ @ 90 CL [JHEP 1310 (2013), 090]

Rare Muon Decays

 Neutrino oscillations allows for CLFV in higher order dipole penguin diagrams

- SM predicts branching ratios beyond measurable levels: ∝(m_v/m_W)⁴ < 10⁻⁵⁵
- Any detection of CLFV is unambiguous sign of NP

Photon can be real $(\mu \rightarrow e\gamma)$ or virtual $(\mu N \rightarrow eN, \mu \rightarrow eee)$

$$\mu^+ \rightarrow e^+ \gamma$$

- Clear two-body signal topology with back to back e⁺-γ
 - $E_{e+} = E_y = 52.8 \text{ MeV}$
 - $\Delta t_{e\gamma} = 0$

- MEG experiment at PSI 1.3MW Proton Cyclotron:
 - High intensity DC muon beam
 - high rate e⁺ spectrometer in gradient magnetic field (which sweeps out Michel positrons)
 - high resolution Liquid Xenon scintillation detector for γ rays

- Backgrounds:
 - Michel decay with accidental coincidence
 - radiative Michel decay

1m

MEG Result and MEG-II

• Using data up to 2011: $BR(\mu^+ \rightarrow e^+ \gamma) < 5.7 \times 10^{-13} @ 90\% C.L.$

J.Adam et al., PRL 110 (20), 201801

 Set constraints on NP models accommodating anomalous muon magnetic moment (G.Isidori, PRD 75, 115019 (2007))

- In 2012-2013 already collected more than twice the statistics (analysis in progress) but reaching MEG final sensitivity of 5x10⁻¹³
- MEG-II upgrade with larger acceptance and better resolution for higher beam intensity promises to reach 5x10⁻¹⁴ in sensitivity.

R.H. Bernstein, P.S. Cooper / Physics Reports 532 (2013) 27-64

$\mu^{-} + N \rightarrow e^{-} + N$

- Two experiments, Mu2e @ FNAL and COMET @ J-PARC, have been proposed for searching μ → e conversion in presence of a nucleus (AI)
- Present limit from SINDRUM-II @
 PSI: BR(μ⁺→e⁺γ)<5.7×10⁻¹³ @90% C.L.
- Experimental signature is a monoenergetic electron of energy:

$$E_{\mu e} = m_{\mu} - E_b - E_{\mu}^2 / 2m_N$$

 $\approx 104.973 \text{ MeV (for Al)}$
where E_b is muonic binding energy
 $(E_b \propto Z^2 \Rightarrow \text{low Z nucleus is preferred)}$

 New experiments promise an increase in sensitivity up to 10⁻¹⁷ and probe NP mass scale in the 10³-10⁴ TeV range Govea and Vogel, arXiv:1303.4097v2 [hep-ph], 2013

- B($\mu \rightarrow e^{conv}$ in ²⁷Al) curves are for Mu2e and Mu2e upgrade sensitivity
- B($\mu^+ \rightarrow e^+ \gamma$) are for MEG and MEGII sensitivity

Mu2e Experimental Principle

Mu2e measures the ratio:

$$R_{\mu e} = \frac{\Gamma[\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)]}{\Gamma[\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z, N) \to \nu_{\mu} + A(Z, N)]}$$

for which details of nuclear wave function cancel

Muonic atom can undergo:

a) nuclear capture (61% in Al)

Mu2e Experimental Principle

Mu2e measures the ratio:

$$R_{\mu e} = \frac{\Gamma[\mu^- + A(Z, N) \to e^- + A(Z, N)]}{\Gamma[\mu^- + A(Z, N) \to \nu_\mu + A(Z - 1, N + 1)]}$$

for which details of nuclear wavefunction get cancelled

Muon "stops" in 1s state of target nucleus and emits X-rays with characteristic spectrum.

Muonic atom can undergo:

- a) nuclear capture (61% in Al)
- b) decay in orbit (DIO: 39%)

Mu2e Experimental Principle

Mu2e measures the ratio:

$$R_{\mu e} = \frac{\Gamma[\mu^- + A(Z, N) \to e^- + A(Z, N)]}{\Gamma[\mu^- + A(Z, N) \to \nu_\mu + A(Z - 1, N + 1)]}$$

for which details of nuclear wavefunction get cancelled

Muon "stops" in 1s state of target nucleus and emits X-rays with characteristic spectrum.

Muonic atom can undergo:

- a) nuclear capture (61% in Al)
- b) decay in orbit (DIO: 39%)
- c) conversion.

$\mu^- \rightarrow e^-$ conversion

- The energy distribution of electrons from DIO muon decay is given by a modified Michel spectrum:
 - presence of atomic nucleus momentum transfer stretches DIO electron energies up to signal energy $E_{\mu e}$
- Only 10⁻¹⁷ of DIO spectrum is within 1 MeV of energy endpoint
 - Limits maximum sensitivity of conversion experiments

Energy resolution below 1 MeV and minimal energy loss for e are at premium.

background #1: Cosmic muon producing e in stopping target

Need cosmic veto

background #2: radiative pion capture $\pi + N \rightarrow \gamma + N$, with $\gamma \rightarrow e^+e^-$

 Much faster decay: can be controlled with beam time structure.

9/19/14

Mu2e Experiment

Mu2e Experiment

Reconstructed e Momentum

- design goal SES: 2.5x10⁻¹⁷
- Need at least 10¹⁸ Al-bound muons
- 3 yrs run with 10¹⁰ stopped muon per second

- Endorsed by P5.
- Construction of muon campus at FNAL to start this winter
- First run in 2019!

Summary

- Kaons and muons rare decays processes gives us a window on NP
- Golden kaon modes are being "attacked" by KOTO and NA62
- LFV and LNV searches in kaon decays show no NP smoking gun yet but they are helping eliminating some models
- Rare muon decays are pursued by multiple experiments, either mature or ready to go online soon

Summary

- Kaons and muons rare decays processes gives us a window on NP
- Golden kaon modes are being "attacked" by KOTO and NA62
- LFV and LNV searches in rare kaon decays show no NP smoking gun yet but they are helping eliminating some models
- Rare muon decays are pursued by multiple experiments, either mature or ready to go online soon
- Future looks yummy!

Ultra Rare Decays in Kaons and Muons

Backup slides

XXXIV Physics in Collision Symposium
Bloomington, IN
Sept 19th, 2014

Detector Performance

Calorimeter response

Reconstruct K_L mass in $K_L \rightarrow \pi^0 \pi^0 \pi^0$ decays (BR \approx 20%) using events with 6 photon clusters in CsI calorimeter

Veto response

Reconstruct K_L mass in $K_L \rightarrow \pi^0 \pi^0$ decays (BR \approx 8.6 \times 10⁻⁴) using events with 4 photon clusters before (top) and after (bottom) applying veto

9/19/14