Charm Decays
and
Quantum Coherence

Hajime Muramatsu
University of Minnesota
There are (too) many interesting topics

Charm Decays
and
Quantum Coherence
Charm Decays and Quantum Coherence

There are (too) many interesting topics

Rare/Forbidden Decays
Not supposed to see them according to the SM.
Then look for them, just in case!

(semi-) Leptonic Decays
Extractions of $|V_{cx}|$, and decay constants.

Hadronic Decays
i.e. BF of D_s decays (often, important inputs in B decays).
Charm productions in continuum (i.e., $\psi(3770) \rightarrow \bar{D}D$ line shape).

There are (too) many interesting topics

Rare/Forbidden Decays
Not supposed to see them according to the SM. Then look for them, just in case!

(semi-) Leptonic Decays
Extractions of $|V_{cs}|$, and decay constants.

Hadronic Decays
i.e. BF of $D(s)$ decays (often, important inputs in B decays).
Charm productions in continuum (i.e., $\psi(3770) \rightarrow \bar{D}D$ line shape).

Charm Decays and Quantum Coherence

Use the quantum-correlated Charm mesons
- usually produced at mass threshold \rightarrow relevant experiments: CLEO-c/BESIII.
- can extract $D\bar{D}$ mixing parameters.
- can also help the γ/ϕ_3 measurement (i.e., via the GGSZ method).
There are (too) many interesting topics

Rare/Forbidden Decays
Not supposed to see them according to the SM. Then look for them, just in case!

(semi-) Leptonic Decays
Extractions of $|V_{cs}|$, and decay constants.

Hadronic Decays
i.e. BF of $D(s)$ decays (often, important inputs in B decays).
Charm productions in continuum (i.e., $\psi(3770) \rightarrow D\bar{D}$ line shape).

Charm Decays

I will briefly go through some of the recent experimental results in these three topics today

Quantum Coherence

Use the quantum-correlated Charm mesons
- usually produced at mass threshold \rightarrow relevant experiments: CLEO-c/BESIII.
- can extract $D\bar{D}$ mixing parameters.
- can also help the γ/ϕ_3 measurement (i.e., via the GGSZ method).
Outline

1. Rare/Forbidden searches
 - Experimental limits are starting to reach $\text{BF} \sim 10^{-9}$ and starting to overlap some non-SM predictions.
 - Will go through two recent results on FCNC transitions.

2. Leptonic and semi-leptonic decays.
 - Access to CKM matrix elements, $V_{cd(s)}$.
 - Will go through recent results on D^0 and D^+ decays.

3. Quantum-Correlated Charm analyses
 - Provide access to the mixing parameters.
 - Can also contribute the γ/ϕ_3 measurement.
 - Will go through the recent measurements of $\delta_{K\pi}$, γ_{cp}, as well as the c_i and s_i.
All results are from Modern Heavy Flavor Factories

Belle Detector
- SC solenoid 1.5T
- CsI(Tl) 16X0
- TOF counter
- 3.5 GeV e+
- Central Drift Chamber
 small cell + He/C2H6
- Si vtx. det.
 3 yr. DSSD
- μ/KA detection
 14/15 yr. RPC+Fe

BABAR Detector

CLEO-c
- SC Quadrupole Pylon
- Rare Earth Quadrupole
- Iron Polypiece
- Iron Polepiece
- SC Solenoid
- Barrel Calorimeter
- Endcap Calorimeter
- Drift Chamber
- Inner Drift Chamber
 Beam pipe
- Wire tracker (no Si)
 TOF + dE/dx for PID
 Si End.: RPC muon
Why Rare Charm Decay?

- Charm is unique. FCNC transitions are highly suppressed in the SM.
 - mediated by the lighter down-quark sector.
 - more effective GIM suppression here than in B decays.

- That is, the “SM noise” is much lower in Charm! (non-existent at current experimental limits)
 Of course, this does not mean the signature of new Physics (NP) is larger in Charm, however.

- Observing or even NOT observing rare decays help to constrain effects from NP.
\[D^0 \rightarrow \mu^+\mu^- \]

- Expect small short distance contribution: \(B(D^0 \rightarrow \mu^+\mu^-) \sim 10^{-18} \).
- The long distance might be dominated by the two photon intermediate state;
 \(B(D^0 \rightarrow \mu^+\mu^-) \sim 2.7 \times 10^{-5} \times B(D^0 \rightarrow \gamma\gamma) \) (PRD66, 014009 (2002)).
 If we take \(B(D^0 \rightarrow \gamma\gamma) < 2.2 \times 10^{-6} \) @90% C.L. (PRD85, 091107 (2012)), then \(B(D^0 \rightarrow \mu^+\mu^-) < \sim 6 \times 10^{-11} \).

- LHCb (PLB725, 15 (2013))
 - \(B(D^0 \rightarrow \mu^+\mu^-) < 6.2 \times 10^{-9} \) @ 90% C.L.
 - Still some room to reach the prediction
 - Some BSM predict BF \(\sim 10^{-10} \)
 (R-parity violation, PRD66, 014009 (2002);
 Warped extra dimensions, PRD90, 014035 (2014))

- More data at LHCb would be very interesting!
\(D^0 \rightarrow \gamma\gamma \)

- Forbidden by the tree level.
- Short distance: \(BF \sim 10^{-11} \) (PRD66, 014009)
- Long distance: (VMD, HQχPT): \(BF \sim 10^{-8} \) [(PRD66, 014009 (2002)), (PRD64, 074008 (2001))]
- MSSM could enhance the rate up to \(\sim 10^{-6} \) (c \(\rightarrow \) u \(\gamma \) via gluino exchange) (PLB500, 304 (2001)).
- BaBar (PRD85, 091107(R) (2012)):
 - Reconstruct through \(D^{*+} \rightarrow D^0(\rightarrow \gamma\gamma)\pi^+ \), normalized by \(D^{*+} \rightarrow D^0(\rightarrow K_S\pi^0)\pi^+ \).
 - Peaking background from \(D^0 \rightarrow \pi^0\pi^0 \).
 - \(B(D^0 \rightarrow \gamma\gamma) < 2.2 \times 10^{-6} \) @ 90% C.L.
Experimental status in Charm decays - I (from HFAG 2014)

• LHCb ULs are now reaching ~10^{-7}-10^{-8} level.
• B factories are doing well, reaching 10^{-6}-10^{-7} level. Looking forward to the Belle II!
Experimental status - II

BF(D⁺ → X)

BF(Dˢ⁺ → X)

E687 E653 E791
BaBar Focus CLEO
LHCb D0

E653 E791 CLEO
BaBar Focus LHCb
Experimental status - III

• So far, no surprises.
• LHCb upgrade and Belle II are on the horizon.
• Should be able to see some of the listed rare decays soon
 ... or we may see a surprise!?
Recent results in leptonic and semi-leptonic decays of Charm mesons
Leptonic decays $D_{(s)}^+ \rightarrow \ell + \nu_{\ell}$

\[
\Gamma(D^+ \rightarrow \ell^+ \nu_{\ell}) = \frac{f_D^2 |V_{cd}|^2 G_F^2}{8\pi m_\ell m_D^2} \left(1 - \frac{m_\ell^2}{m_D^2}\right)^2
\]

- With the knowledge of $|V_{cd(s)}|$, extract the decay constant, $f_{D(s)}$ → compare to the Lattice QCD → validate the Lattice QCD calculations in $f_{B(s)}$.

- Or vice versa: Taking the calculated $f_{D(s)}$, extract $|V_{cd(s)}|$ to help to over-constrain the CKM unitarity.

- Also interesting is:
 \[
 \Gamma(D^+ \rightarrow \tau^+ \nu_\tau) : \Gamma(D^+ \rightarrow \mu^+ \nu_\mu) : \Gamma(D^+ \rightarrow e^+ \nu_e) = 2.67 : 1 : 2.35 \times 10^{-5}
 \]
 comes with the minimal uncertainties.
 (masses of the meson and the lepton)
 But $D^+ \rightarrow \tau^+ \nu_\tau$ has not been seen, yet.
 BF<1.2×10^{-3} @90% CL: CLEO PRD78,052003 (2008)

Notice: this UL is $\sim 3.14 \times \text{BF}(D^+ \rightarrow \mu^+ \nu_\mu)$. Could BESIII see this?
\[D^+ \rightarrow \mu^+ \nu_\mu \]

- BESIII (PRD89, 051104(R) (2014)) : 2.9 fb\(^{-1}\) at \(E_{cm} = 3.773 \) GeV.
- Measured \(B(D^+ \rightarrow \mu^+ \nu_\mu) = (3.71\pm0.19\pm0.06)\times10^{-4} \)
 The most precise measurement to date.
 - With \(|V_{cd}| \) of CKM-fitter input, \(f_{D^+} = (203.2\pm5.3\pm1.8) \) MeV
 - With \(f_{D^+} \) of LQCD input (PRL100, 062002 (2008))
 \[|V_{cd}| = 0.2210\pm0.0058\pm0.0047. \]
- Statistically limited.
 More data would be welcome.
- BESIII plans to take
 \(\sim 10 \) fb\(^{-1}\) in the future!
Comparison of $B(D^+ \rightarrow \mu^+ \nu_\mu)$ and f_{D^+}

Good consistencies are seen among the previous experimental results.
Comparison of $B(D_s^+ \rightarrow (\mu^+/\tau^+) \nu_\mu$)

- Similar results in the Charmed strange meson.
- Good overall consistency in BFs.
Comparison of f_{D_s}

- Reasonable consistencies.

- BESIII plans to have a dedicated D_s data taking in the near future.
Semi-Leptonic decays $D_{(s)}^+ \rightarrow P + l + \nu_l$

$\frac{d\Gamma(D \rightarrow K(\pi)e\nu)}{dq^2} = \frac{G_F^2 |V_{cs(d)}|^2 P_K^3(q^2) f_+(q^2)}{24\pi^3}$

$q^2 = (p_1 + p_\nu)^2 \Rightarrow M_{inv}^{lepton pair}$

- Essentially measure $|V_{cd(s)}| \times |f(q^2)|$.
- Input $|V_{cs(d)}| \rightarrow \text{extract} |f(q^2)| \rightarrow$ compared to the LQCD. Validating the FF calculations of LQCD here is important i.e., the measurement of $|V_{ub}|$ via $B \rightarrow \pi l \nu$ has a large dependence on the “theoretical input (its FF)” from LQCD.
- Or vice versa:
 Input $|f(q^2)|$ from LQCD $\rightarrow \text{extract} |V_{cs(d)}|$ \rightarrow constrain the CKM unitarity.
\(D^0 \rightarrow K/\pi\ e^+\ \nu_e\)

- BESIII: 2.9 fb\(^{-1}\) at \(E_{cm} = 3.773\) GeV.
- \(U_{\text{miss}} \sim 0\) if the missing particle is a neutrino.
- The resultant BFs are consistent with the previous measurements (see the next slide).

Most precise to date.
Comparison of $B(D^0 \rightarrow (K/\pi)^- e^+ \nu_e)$

\[\frac{\Gamma(K^- e^+ \nu) / \Gamma_{total}}{\Gamma(\pi^- e^+ \nu) / \Gamma_{total}} \]

\begin{align*}
(3.4\pm 0.5 \pm 0.4)\% & \quad \text{MARK-III (1989)} \\
(3.82\pm 0.40 \pm 0.27)\% & \quad \text{BES-II (2004)} \\
(3.45\pm 0.10 \pm 0.19)\% & \quad \text{BELLE (2006)} \\
(3.50\pm 0.03 \pm 0.04)\% & \quad \text{CLEO-c (2009)} \\
(3.50\pm 0.014 \pm 0.033)\% & \quad \text{BESIII Preliminary} \\
(3.53\pm 0.27 \pm 0.43 \pm 0.05)\% & \quad \text{E691 (1989)} \\
(3.49\pm 0.23 \pm 0.23 \pm 0.05)\% & \quad \text{CLEO (1991)} \\
(3.80\pm 0.10 \pm 0.17 \pm 0.05)\% & \quad \text{CLEO2 (1993)} \\
(3.60\pm 0.03 \pm 0.05 \pm 0.05)\% & \quad \text{BaBar (2007)} \\
(3.55\pm 0.05)\% & \quad \text{PDG13} \\
\end{align*}

$B[D^0 \rightarrow K^- e^+ \nu]$ \hspace{1cm} $B[D^0 \rightarrow \pi^- e^+ \nu]$
Comparison of form factors

- Points: BESIII
- Curves: Fermilab Lattice, MILC, and HPQCD (PRL94, 011601 (2005))
 Fermilab Lattice and MILC (PRD80, 034026 (2009))
 Based on the BK model (PLB478, 417 (2000))
- Consistent with each other.
- Would be nice to have an even larger sample to probe the higher q^2 bins.
Quantum Coherence in e^+e^- annihilation near Charm mass threshold
The decay rate of a correlated state

At $E_{cm} \sim M(\psi(3770))$, a pair of $D^0 \bar{D}^0$ is produced via

$$e^+e^- \rightarrow \gamma^* (\rightarrow \psi(3770)) \rightarrow D^0 \bar{D}^0.$$

This obeys the following selection rules on the produced pair of D mesons.

- The two produced neutral mesons must have opposite CP (i.e., see Goldhaber and Rosner, PRD15, 1254 (1977).

For instance,

- $D^0 \rightarrow$ CP+ final states (such as K^+K^-) AND
- $\bar{D}^0 \rightarrow$ CP+ final states (such as $\pi^+\pi^-$) does NOT happen.

And (CP-, CP-) combo does not happen either.

- $D^0 \rightarrow$ CP- final states (such as $K_S\pi^0$) are maximally enhanced (doubled).

That is, the measured $BF_{\text{eff}}(D^0 \rightarrow K_S\pi^0)$ is twice as $BF(D^0 \rightarrow K_S\pi^0)$ with no such coherence effect on the parent D.
The decay rates in mixed CP final states

- $D^0 \rightarrow$ CP+ final states (such as K^+K^-) AND
 $\bar{D}^0 \rightarrow$ generically (not look at its decay experimentally).
 This decay rate (e.g., $D^0 \rightarrow K^+K^-$) is not affected.

- $D^0 \rightarrow$ Flavored final states (CF+DCSD, such as $K^-\pi^+$) AND
 $\bar{D}^0 \rightarrow$ CP± final states.

The rates are still affected due to the interference between CF and DCS.

-> extract $\delta_{K\pi}$, where $\langle K^-\pi^+|\bar{D}^0\rangle/\langle K^-\pi^+|D^0\rangle = -r \cdot e^{-i\delta}$.

For multi-body (such $K_\pi\pi^+\pi^-$), one can obtain the δ, averaged over each bin of a Dalitz distribution.
The decay rates in semi-leptonic decays

- On the other hand, for the case of semi-leptonic decay, such as $D^0 \rightarrow K^- e^+ \nu$ (only the CF mode!) AND $\bar{D}^0 \rightarrow CP\pm$ final states, there is no interference. Its decay rate does not depend on the CP content of its parent D. Yet, the total width of its parent D depends on CP.

For instance,

$$N(D^0 \rightarrow K^- e^+ \nu; \bar{D}^0 \rightarrow CP\pm)/N(\bar{D}^0 \rightarrow CP\pm) = B_{eff}(D^0 \rightarrow K^- e^+ \nu)$$

$$= B(D^0 \rightarrow K^- e^+ \nu) \times \Gamma/\Gamma_{CP\pm}$$

$$\approx B(D^0 \rightarrow K^- e^+ \nu) \times (1\pm y) \text{ (neglecting terms with } y^2 \text{ or higher).}$$

→ can extract the y via semi-leptonic tags.
The latest measurement of $\delta_{K\pi}$ from BESIII

- In $D^0 \rightarrow K\pi$ decays, its CF and DCSD interfere. The ratio of the two amplitudes is $\langle K^-\pi^+|\bar{D}^0 \rangle / \langle K^-\pi^+|D^0 \rangle = -r \cdot e^{-i\delta}$.

- Neglecting higher orders in the mixing parameters (e.g., y^2), one can arrive at the following relation:

$$A_{CP \rightarrow K\pi} = r \cdot \cos \delta_{K\pi} + [D\text{-mixing correction (y and } R_{WS})]$$

where $A_{CP \rightarrow K\pi} = \text{CP-tagged rate asymmetry}$

$$= [B(D_2 \rightarrow K^-\pi^+)-B(D_1 \rightarrow K^-\pi^+)]/B(D_2 \rightarrow K^-\pi^+)+B(D_1 \rightarrow K^-\pi^+)].$$

- $B(D_{1,2} \rightarrow K\pi)$ can be measured by tagging one D (tag side) with exclusive CP-eigenstates which then defines the eigenvalue of the other D.

\[\text{CP tag at threshold.}\]
D → CP states
(no requirement on how the other D decays)

\[M_{BC} = \sqrt{E_{beam}^2 - \vec{p}_D^2} \]

- PLB734, 227 (2014)
$D_{1,2} \rightarrow K\pi$, $D_{2,1} \rightarrow CP$ states

- Example fit for the case of $(K\pi, K_\pi\pi^0)$
- PLB734, 227 (2014)

- Measured $A_{CP \rightarrow K\pi} = (12.77 \pm 1.31 ({\text{stat.}}) \pm 0.33 - 0.31 ({\text{syst.}})) \%$.

- With external inputs from HFAG2013 and PDG (for γ and R_{WS})
 $\cos \delta_{K\pi} = 1.03 \pm 0.12 ({\text{stat.}}) \pm 0.04 ({\text{syst.}}) \pm 0.01 ({\text{external}})$.

- This result is consistent with and more precise than the recent CLEO-c result (PRD86, 112001 (2012)):
 $\cos \delta_{K\pi} = 1.15^{+0.19}_{-0.17} ({\text{stat.}}) ^{+0.00}_{-0.08} ({\text{syst.}})$.
Could also determine the mixing parameter, y_{CP}

- y_{CP} is defined as:

$$2 \cdot y_{CP} = (|q/p| + |p/q|) \cdot y \cdot \cos \phi - (|q/p| - |p/q|) \cdot x \cdot \sin \phi,$$

where p and q are mixing parameters, and $\phi = \arg(q/p)$ is the weak phase difference of the mixing amplitudes.

Notice: for no CPV case, $p = q = 1/\sqrt{2}$ and $y_{CP} \equiv y$.

- From the fact that semileptonic BF of $D_{1,2}$, $B(D_{CP \pm} \rightarrow l)$, gets modified by a factor of $1 \pm y_{CP}$, and neglecting terms with y^2 (or higher), one can arrive at

$$y_{CP} \approx \frac{1}{4} \left(\frac{B_{DCP^{-} \rightarrow l}}{B_{DCP^{+} \rightarrow l}} - \frac{B_{DCP^{+} \rightarrow l}}{B_{DCP^{-} \rightarrow l}} \right)$$
Extracting γ_{CP} in BESIII data

BESIII preliminary result;

$\gamma_{CP} = [-1.6\pm1.3{\text{(stat.)}}\pm0.6{\text{(syst.)}}]\%$.

Most precise result based on QC Charm mesons. Having a larger sample would be a help.
Comparison with other measurements

- Our result is consistent with the world average (HFAG2013; this preliminary result is not included in the average).
- Also consistent with the latest result from CLEO-c (PRD86, 112001 (2012));
 \[y_{CP} = (4.2 \pm 2.0 \pm 1.0)\% \]
 (not listed in the figure).
Can also contribute to the measurement of γ/ϕ_3

- B factories can measure γ/ϕ_3 through $B \rightarrow D K$.
- The latest comes from the LHCb (arXiv:1408.2748) via the GGSZ method in $D^0 \rightarrow K_S \pi \pi^-$ and $K_S K^+ K^-$.
- Measured $\gamma = (62^{+15}_{-14})^\circ$
 (along with $r_B = 0.080^{+0.019}_{-0.021}$ and $\delta_B = (134^{+14}_{-15})^\circ$).
 A single most precise measurement of γ to date.
- They needed inputs, c_i and s_i:
 cosine and sine of the strong-phase difference between the D^0 and \bar{D}^0 decay, averaged in each Dalitz bin, i.
- Took the CLEO-c (statistically limited) results (PRD82, 112006, (2010)).
- BESIII has recently repeated this CLEO-c analysis based on their data which is $\sim 3.5 \times$ larger than that of CLEO.
Relations between c_i, s_i, and yields in Dalitz bins

- One could derive the following relations between efficiency-corrected yields in the i^{th} Dalitz bins and c_i (s_i) (see backups more details and PRD82, 112006 (2010)).

 - For the case of $D \rightarrow \text{CP states AND } D \rightarrow K_S \pi^+\pi^-$:
 \[
 \text{Yields in } i^{th} \text{ bin } \propto \pm c_i
 \]

 - For the case of $D \rightarrow K_S \pi^+\pi^- \text{ AND } D \rightarrow K_S \pi^+\pi^-$:
 \[
 \text{Yields in } i^{th} \text{ and } j^{th} \text{ bins of the two Dalitz plots } \propto c_i c_j + s_i s_j
 \]

- Simultaneously fit to these “Yields in each bin” to extract c_i and s_i.

- One could also gain statistical power by employing $K_L \pi^+\pi^-$.
For the case of “CP tag vs $K_S\pi^+\pi^-$”

- Data is using the full 2.9 fb$^{-1} \psi(3770)$ dataset
- Results presented here will be using Optimal Binning scheme.
Preliminary result

- Only statistical uncertainties are shown in the optimal binning scheme (which dominate in most of the bins).
- Consistent results with the previous CLEO-c measurement, but statistically superior.
- What this result could do to the γ/ϕ_3 is, if we take the Belle’s Dalitz result (PRD85, 112014 (2012)),
 γ (in degrees) = $77.3^{+15.1}_{-14.9}$ (stat.) ± 4.2 (syst.) $\pm 4.3 (c_i/s_i) \rightarrow \pm 2.5 (c_i/s_i)$
 We expect the uncertainly would be reduced by $\sim 40\%$
- Very important inputs for the future analyses by LHCb and Belle II, where the statistical sensitivity starts to reach $\sim 1\sim 2$ degrees.
Summary

- Searches for rare/forbidden Charm decays are finally becoming interesting (exciting) with LHCb upgrade and Belle II on the horizon.

- Leptonic and semi-leptonic decays in Charm provide access to $|V_{cx}|$ and complementary to the B Physics. Having even larger Charm samples at BESIII improves the current results further.

- Quantum-correlated $D^0\bar{D}^0$ in e^+e^- annihilations near threshold:
 - provides an unique way to measure the Charm mixing parameters.
 - also can provide precise measurements on c_i and s_i.
Backups
D^0\bar{D}^0 mixing

- Observation of D\bar{D} mixing, first seen by the B factories (HFAG: arXiv 1207.1158) and now observed by LHCb: PRL110, 101802 (2013).

- D\bar{D} mixing is conventionally described by two parameters:

\[x = \frac{2(M_1-M_2)}{\Gamma_1+\Gamma_2}, \quad y = \frac{(\Gamma_1-\Gamma_2)}{(\Gamma_1+\Gamma_2)}, \]

where \(M_{1,2} \) and \(\Gamma_{1,2} \) are the masses and widths of the neutral D meson mass eigenstates.

(Flavor eigenstates, D^0/\bar{D}^0, are not the same as mass eigenstates, D_1/D_2)

Or \(x' = x \cdot \cos \delta_{K\pi} + y \cdot \sin \delta_{K\pi}, \quad y' = y \cdot \cos \delta_{K\pi} - x \cdot \sin \delta_{K\pi}. \)

- \(\delta_{K\pi} \) is the strong phase difference between the doubly Cabibbo suppressed (DCS) decay, \(\bar{D}^0 \to K\pi^+ \) and the Cabibbo favored (CF) decay, \(D^0 \to K\pi^+ \) or \(\langle K\pi^+ | \bar{D}^0 \rangle / \langle K\pi^+ | D^0 \rangle = -r \cdot e^{-i\delta}. \)

So one can connect \((x,y)\) with \((x',y')\) via \(\delta_{K\pi}. \)

- For this part of my talk, I present preliminary results on \(\delta_{K\pi} \) and \(y \) using the quantum correlation between the produced D^0 and \(\bar{D}^0 \) pair in data taken at BESIII. This will then improve the determination of the mixing params, \((x,y)\).
Reconstructing events with a neutrino

- Reconstruct the all decay particles, except the neutrino.
- At CLEO-c and BESIII, where they take the data close to the mass threshold (i.e., $e^+e^- \rightarrow (\psi(3770)) \rightarrow D\bar{D}$), one can reconstruct one of the D mesons fully (tag side), while the other D is reconstructed, except the neutrino (signal side). The existence of neutrino can be inferred by a missing variable such as:

$$M_{\text{miss}}^2 = (E_{\text{beam}} - E_{\mu^+})^2 - (-\vec{p}_{D_{\text{tag}}} - \vec{p}_\mu)^2$$

for the case of $D^+ \rightarrow \mu^+ \nu_\mu$. $M_{\text{missing}}^2 \sim 0$ for the signal events.
Measuring $B(D_{CP\pm} \rightarrow K^-\pi^+)$

- Double-Tag technique:

$$B(D_{CP\pm} \rightarrow K\pi) = \frac{B(D_{CP\pm} \rightarrow CP^\mp \text{ states}) \times B(D_{CP\pm} \rightarrow K\pi)}{B(D_{CP\pm} \rightarrow CP^\mp \text{ states})}.$$

So they need to measure;

- Yields (BF) when one D decays a CP final state
 while the other D decays generically

- Yields (BF) when one D decays a CP final state
 while the other D decays into $K\pi$.

- CP states they employ (8 modes):

| CP^+ | K^+K^-, $\pi^+\pi^-$, $K^0_S\pi^0\pi^0$, $\pi^0\pi^0$, $\rho^0\pi^0$ |
| CP^- | $K^0_S\pi^0$, $K^0_S\eta$, $K^0_S\omega$ |

where we reconstruct $K_S \rightarrow \pi^+\pi^-$, $\pi^0/\eta \rightarrow \gamma\gamma$, $\omega \rightarrow \pi^+\pi^-\pi^0$, $\rho \rightarrow \pi^+\pi^-\pi^0$.

- Notice that most of systematics on the tag side get canceled in $B(D_{CP\pm} \rightarrow K\pi)$.

The remaining systematics (reconstruction/simulation) of $K\pi$ are also canceled in the determination of $A_{CP \rightarrow K\pi}$.
The selection rule can be seen in data

<table>
<thead>
<tr>
<th>Mode</th>
<th>CP+</th>
<th>CP-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield(tag KK)</td>
<td>efficiency(%)</td>
</tr>
<tr>
<td>CP+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_S^0\pi^0\pi^0$</td>
<td>$8 \pm 3(\ast)$</td>
<td>11.80 ± 0.11</td>
</tr>
<tr>
<td>CP+</td>
<td>$\rho\pi^0$</td>
<td>$13 \pm 8(\ast)$</td>
</tr>
<tr>
<td>CP-</td>
<td>$K_S^0\omega$</td>
<td>158 ± 13</td>
</tr>
</tbody>
</table>

* Consistent with zero.
* Consider as one of the systematics.

Yields of $K\mu\nu$ in double tags ($n_{K\mu\nu,CP\mp}$) (reconstruct CP-final states from one D decay, with \textquote{\textquoteright}K\mu\nu\textquoteright{} from the other D)

- $K\pi\pi^0$ shapes and sizes are fixed based on control samples of actual data.
- The control samples are obtained by the same CP states and $K\pi\pi^0$, while ignoring the two photons from π^0 decays to calculate U_{miss}.
See the next slide for detail.

- **Signal shape:** MC shape, convoluted with an asymmetric Gaussian.
- **Background:** A 1st order polynomial. $K\pi\pi^0$ (dominant).
Fixing the $K\pi\pi^0$ shape

- Obtain $E_{\text{extra}} \equiv$ Sum of the all un-used energies deposited in EM calorimeter.
- E_{extra} tends to be larger if it is $K\pi\pi^0$ due to the ignored extra photons from π^0 decay and is small if it is $K\mu\nu$.
- We actually do require $E_{\text{extra}} < 0.2$ GeV to select $K\mu\nu$ signal candidates.

![Fix shape](image)

- Fit to U_{miss} in $E_{\text{extra}} > 0.5$ GeV where $K\mu\nu$ peak is suppressed.
- The fitted shape \equiv MC shape, convoluted with a Gaussian.

$(K\pi\pi^0$ yields in data in $E_{\text{extra}} < 0.2$ GeV) = $R \times (K\pi\pi^0$ yields in data in $E_{\text{extra}} > 0.5$ GeV), where $R = (K\pi\pi^0$ yields in MC in $E_{\text{extra}} < 0.2$ GeV)/(MC in $E_{\text{extra}} > 0.5$ GeV).
Can also contribute to the measurement of γ/ϕ_3

- Extract the γ through the measurement of the interference between $b \rightarrow c$ and $b \rightarrow u$ when both D^0 and \bar{D}^0 decay to the same final state, $f(D)$.

$$A_{B\pm} \propto A_D + r_B e^{i(\delta_B \pm \gamma)} A_{\bar{D}}$$ (where r_B is $|\langle B^- \rightarrow \bar{D}^0 K^- \rangle|/|\langle B^- \rightarrow D^0 K^- \rangle|$). δ_B is the strong phase difference).
Can also contribute to the measurement of γ/ϕ_3

- This is one of the popular binning scheme, "Optimal binning", where bins are adjusted to maximize the sensitivity to γ/ϕ_3 (CLEO: PRD82, 112006 (2010)).
- BESIII has recently repeated this analysis based on their data which is $\sim3.5\times$ larger than that of CLEO.
c_i and s_i in $D^0 \rightarrow K_{S,L} \pi^+\pi^-$ Dalitz analysis

Result of splitting the Dalitz phase space into 8 equally spaced phase bins based on the BaBar 2008 Model.

Starting with the equally spaced bins, bins are adjusted to optimize the sensitivity to γ. A secondary adjustment smooths binned areas smaller than detector resolution.

Similar to the “optimal binning” except the expected background is taken into account before optimizing for γ sensitivity.

Source: CLEO Collaboration, Physical Review D, vol 82, pp. 112006 - 112035
Equation on calculating c_i

For the CP tag modes, one can show that the total bin yields are related to c_i by

$$M_i^\pm = \frac{S_i}{2S_f} \left(K_i \pm 2c_i\sqrt{K_iK_{-i} + K_{-i}} \right)$$

- $M_i^+(M_i^-)$ yields in each bin of Dalitz plot for CP even(odd) modes.
- S_i (S_{-i}) number of single tags for CP even(odd) modes.
- S_f number of single tags for flavor modes.
- K_i (K_{-i}), yields in each bin of Dalitz plot in flavor modes.

Single Tag modes

<table>
<thead>
<tr>
<th>Type</th>
<th>Tag List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-Flavored</td>
<td>$K^-\pi^+, K^-\pi^+\pi^0, K^-\pi^+\pi^+\pi^-$</td>
</tr>
<tr>
<td>S^+</td>
<td>$K^+K^-, \pi^+\pi^-, K_S\pi^0\pi^0, K_L\pi^0$</td>
</tr>
<tr>
<td>S^-</td>
<td>$K_S\pi^0, K_S\eta(\rightarrow \gamma\gamma), K_S\eta(\rightarrow \pi^+\pi^-\pi^0), K_S\omega, K_S\eta'$</td>
</tr>
</tbody>
</table>
Calculating both c_i and s_i

Using $D^0 \rightarrow K_s\pi^+\pi^-$ vs $\bar{D}^0 \rightarrow K_s\pi^+\pi^-$ we can calculate both c_i and s_i:

$$M_{i,j} = \frac{N_{D,\bar{D}}}{2S_f^2} \left(K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j (c_i c_j + s_i s_j)} \right)$$

- $M_{i,j}$ yields in bin i of first Dalitz plot and bin j of second Dalitz plot.
- S_f number of single tags for flavor modes.
- $N_{D,\bar{D}}$ total number of $D^0 \bar{D}^0$ events.
- $K_i(K_{-i})$, yields in each bin of Dalitz plot in flavor modes.