W, Z, and photon production at the LHC

Masahiro Kuze Tokyo Institute of Tec ology

PIC 2014 Indiar 17/Sep/2014

The Large Hadron Collider

Completed in 2008, CERN, Geneva
Physics runs in 2010 - 2012 (Run 1)

Ldt ~ 5 fb⁻¹ 2011 20 fb⁻¹ 2012

• pp collisions at $\sqrt{s} = 7 \text{ TeV} (3.5 + 3.5) \text{ for } 2010-11$ $\sqrt{s} = 8 \text{ TeV} (4 + 4) \text{ for } 2012$ • also Pb+Pb, p+Pb (not covered here) • Long Shutdown (LS1) 2013-2014 •Run 2 from 2015
starting @ √s = 13 TeV
towards 14 TeV (design)
•LS2 planned 2018-2019
•Run 3 till 2022

LHC luminosity

- Main results presented here from:
 - -2011, ~5 fb⁻¹ @ 7TeV -2012, ~20 fb⁻¹ @ 8TeV
- Peak lumi in Run 1 0.75×10³⁴ cm⁻² s⁻¹ (design: 1×10³⁴)
- Run2/3: $1.5 \rightarrow 2 \times 10^{34}$ 300 fb⁻¹ till 2022
- HL-LHC from 2025: 5×10³⁴, 3000 fb⁻¹ in 10y

The experiments

W, Z and γ production @LHC

- Electromagnetic and Weak (EW) probes in hadron-hadron collisions
 - -Clean signature with lepton/photon/ ν (E_Tmiss)
- Benchmark of SM validation at highest energy

 Large mass of W/Z assures hard scale involved
- Measurements at extreme kinematics/topologies allow tuning of tools for SM predictions
 - -(N)NLO calculations, MC event generators
- Crucial in searches for Beyond-SM physics
 - -Signal typically involves W/Z/ γ (+many jets/E_Tmiss)

Topics covered (new since PIC13!)

- Inclusive W, Z/ γ^* production
 - -cross sections, p_T, η distributions, Drell-Yan
 - -hadronic decays, $Z \rightarrow 4$ leptons
- W+jets, Z+jets production
 - -# of jets, jet kinematics, W+jets/Z+jets ratio
- Z/W+heavy flavor production
 - -Z+b, Z+bb, W+bb, ...
- Prompt γ production, $\gamma \gamma$ pair
 - -also γ +jets and γ +jets/Z+jets ratio
- PDF related \rightarrow covered in PDF talk (V. Radescu)
 - W charge asymmetry, W+charm

Inclusive W/Z at 8 TeV

Special data set with low pile-up

- Rw/z = 10.63±0.11(stat.)±0.25(syst.) (FEWZ NNLO: 10.74±0.04)
- Rw⁺/w⁻ =

 1.39±0.01(stat.)±0.02(syst.)
 (FEWZ NNLO: 1.41±0.01)

CMS 10 Events / 2.0 GeV L = 18.2 pb⁻¹, √s = 8 TeV 🗕 data W→ev EWK+tt QCD 6 2 ******* X 20 60 80 40 100

∉_⊤ [GeV]

arXiv:1402.0923 PRL112 (2014) 191802

Forward W in LHCb

η

Drell-Yan cross sections

- $q\bar{q} \rightarrow \gamma^*/Z \rightarrow e^+e^-, \ \mu^+\mu^-$
 - -New ATLAS paper @low-mass (incl. low-pT events in 2010)
 - -New CMS results @8TeV (double diff. $d^2\sigma/dmd|y|$)

p_T and rapidity of Z

- Y=(1/2)In {(E+pz)/(E-pz)}
- At large p_T(Z), data softer than prediction

- Low-pT data (< 26GeV) used for parton-shower tuning of generators
- better than 2% agreement up to 50 GeV 10

Z/W in hadronic decay

- Large QCD multijet BG
- Use b-tag

(dijet p_T>200GeV)

or

- Jet substructure

 (jet pT>320GeV)
 to suppress BG
- Boosted W/Z important for heavy particles (see K. Behr's talk)

$Z \rightarrow 4$ leptons

Br(Z→4I) =

PRL112 (2014) 231806

(3.20±0.25(stat)±0.13(syst))×10⁻⁶

 Already seen in Higgs discovery paper

Z+jets @8TeV

• Up to Njets=7

CMS-PAS-SMP-13-007 cf. ATLAS 7TeV: JHEP07 (2013) 032 LHCb 7TeV (2 < $\eta \mu$,jet < 4.5) arXiv:1310.8197 JHEP01 (2014) 033

- Jet pT, η , HT distributions up N_{jets}>=5
- Also double diff. in pT and y of jets (CMS-PAS-SMP-14-009)
- NLO Sherpa2 describes data well

- NLO BLACKHAT+Sherpa (1) does good job for most distributions, but it's fixed-order calculation (higher jet multiplicity missing)
- Discrepancy seen in E_T sum of all jets (S_T in ATLAS, H_T in CMS)

Improved in Sherpa 2 (Z+jets)

ATLAS-CONF-2014-035 (Appendix)

- Discrepancy also seen in: dijet mass, $\Delta \phi$ (jet₁, μ)
- Data are crucial inputs for tuning state-of-art MC generators & QCD calculations

- Take a ratio of W+jets/Z+jets ion the same jet kinematics
- Some systematics cancel, improved precision
- BH+Sherpa agrees with data for dijet mass

ATLAS-CONF-2014-034 \rightarrow arXiv:1408.6510 (new!)

16

Z+b, Z+bb

- BG to ZH(WH), $H \rightarrow bb$
- Z(W)+heavy flavor: larger theo. uncertainty than light quarks
- 4FNS, 5FNS schemes (udsc+g or udscb+g in proton)

W+bb

• Largest BG: top-quark pair production

arXiv:1312.6608 PLB735 (2014) 204

• Well separated 2 b-jets \rightarrow less theoretical uncertainty

 $\sigma(pp \rightarrow W + b\overline{b}) \times \mathcal{B}(W \rightarrow \mu\nu) = 0.53 \pm 0.05 \text{ (stat)} \pm 0.09 \text{ (syst)} \pm 0.06 \text{ (theo.)} \pm 0.01 \text{ (lumi) pb.}$

Theory: 0.55 ± 0.03 (MCFM) ± 0.01 (had.) ± 0.05 (DPS) pb.

cf. ATLAS W+b: JHEP06 (2013) 084

Z+D from LHCb

- Exclusive reconstruction of Z $\rightarrow \mu^+\mu^-$ and D⁰ \rightarrow K⁻ π^+ and D⁺ \rightarrow K⁻ $\pi^+\pi^+$ (+c.c.)
- Compared with <u>Single Parton Scattering</u> (one parton-parton collision creates Z & D) and <u>Double Parton Scattering</u> (one collision creates Z and another for D)

Prompt γ

- qg \rightarrow q γ , q \overline{q} \rightarrow g γ
- Sensitive to gluon
- Signal extraction using isolation

Ъ

10 =

ATLAS

μ^γl<1.37

- Compared to NLO calculations and LO MC generators
- 100 < $\mathsf{E}_\mathsf{T}{}^r$ < 1000 GeV, $|\eta\,^r|{<}2.37$

γ pair production

- $q\overline{q} \rightarrow \gamma \gamma$ in LO. BG in $H \rightarrow \gamma \gamma$
- SHERPA and 2γ NNLO describes data well

arXiv:1405.7225

 $|\eta(\gamma)| < 2.5$ E_T(γ_1) > 40GeV, E_T(γ_2) > 25GeV arXiv:1211.1913 JHEP01 (2013) 086 $|\eta(\gamma)| < 2.37$

 $E_T(\gamma_1) > 25 \text{GeV}, E_T(\gamma_2) > 22 \text{GeV}$

–difficulty in $\Delta \Phi^{\gamma j}$: can't have two in same hemisphere (Pythia LO + parton shower does a good job)

γ +jet, Z+jet rapidity dist.

 $\cap Q \models \square$ SHERPA with stat uncert

- $y_{sum} = |y_{r,Z}+y_{jet}|/2$ $y_{dif} = |y_{r,Z}-y_{jet}|/2$
- y_{sum} is total boost, sensitive to PDF
- y_{dif} reflects scattering dynamics
- Predictions differ at large y_{dif}
- NLO calculations agree both in γ and Z cases

arXiv:1310.3082 PRD88 (2013) 112009

∩ Q - SHERPA with stat. uncert.

h stat.

) PDF) 1.5

Z+jets/ γ +jets ratio @8TeV

19.7fb⁻ (8TeV)

CMS-PAS-SMP-14-005

CMS Preliminary

0.045 Hy^vl<1.4

о.040 рор 0.035

- Compare Z/ γ *+jets and γ +jets cross sections at the same vector boson kinematics
- Z/ γ ratio reaches plateau (~0.03) for pT $^{\gamma,Z}$ > ~300 GeV
- Validate the $(Z \rightarrow \nu \ \overline{\nu})$ +jet BG in new physics searches based on γ +jet kinematics

Summary plot - ATLAS

Standard Model Production Cross Section Measurements

Status: July 2014

σ [pb] 10^{11} O **ATLAS** Preliminary Run 1 $\sqrt{s} = 7, 8 \text{ TeV}$ 10^{6} $0.1 < p_{\rm T} < 2 \,{\rm TeV}$ $\mathbf{\circ}$ **LHC pp** \sqrt{s} = 7 TeV **LHC pp** \sqrt{s} = 8 TeV $0.3 < m_{jj} < 5 \text{ TeV}$ 10^{5} Õ Theory Theory 10^{4} niet > 0 **Data** 4.5 – 4.7 fb⁻¹ Δ Data 20.3 fb⁻¹ 0 10³ niet > 1njet \geq (0 njet ≥ \mathbf{n} 95% CL 10² 0 upper limit njet \geq 3 0 0.7**I**fb 10^{1} 2.0 fb⁻¹ niet \geq 4 0.4 niet > 30 95% CI uppe 0 0 1 niet > 61.0 fb⁻¹ njet ≥ 7 Ο 0 10^{-1} niet > 8 0 0 njet ≥ 6 0 10^{-2} njet ≥ 7 njet ≥ 7 0 10^{-3} Δ Wγ Jets Dijets W pp Ζ tt t_{t-chan} WW+ Wt WΖ ΖZ ttγ Zγ tŦW tτΖ Zjj $H \rightarrow \gamma \gamma W^{\pm}W^{\pm}jj t_{s-chan}$ WW γγ R=0.4 R=0.4 WΖ EWK EWK |y| < 3.0 |y| < 3.0 fiducial fiducial total total total fiducial fiducial fiducial total total total total fiducial total total total fiducial fiducial fiducial total y*<3.0 niet=0 njet=0

Summary plot - CMS

Conclusions

- Wealth of results in W/Z/ γ production at the LHC from Run 1 (most are new since PIC 2013)
- Tests of SM (EW+QCD) at the highest energy for extreme kinematics (< ~1TeV) and topologies (many jets, heavy flavors, ...)
- Crucial inputs for developments of theoretical predictions (NLO, NNLO) and MC generators
- Be ready for new physics signals in Run 2 (2015-)
- More 8 TeV results expected in PIC 2015 !