Charm Decays and Quantum Coherence

Hajime Muramatsu
University of Minnesota

Charm Decays and Quantum Coherence

Rare/Forbidden Decays

Not supposed to see them according to the SM.
Then look for them, just in case!

(semi-) Leptonic Decays Extractions of $|V_{cx}|$, and decay constants.

Hadronic Decays

i.e. BFs of D_(s) decays (often, important inputs in B decays).

Charm productions in continuum (i.e., $\psi(3770) \rightarrow DD$ line shape).

Charm Decays and Quantum Coherence

Rare/Forbidden Decays

Not supposed to see them according to the SM.
Then look for them, just in case!

(semi-) Leptonic Decays Extractions of $|V_{cx}|$, and decay constants.

Hadronic Decays

i.e. BFs of D_(s) decays (often, important inputs in B decays).

Charm productions in continuum (i.e., $\psi(3770) \rightarrow DD$ line shape).

Charm Decays and Quantum Coherence

Use the quantum-correlated Charm mesons

- usually produced at mass threshold → relevant experiments: CLEO-c/BESIII.
- can extract DD mixing parameters.
- can also help the γ/φ_3 measurement (i.e., via the GGSZ method).

Rare/Forbidden Decays
Not supposed to see them
according to the SM.
Then look for them, just in case!

(semi-) Leptonic Decays Extractions of $|V_{cx}|$, and decay constants.

Hadronic Decays i.e. BFs of $D_{(s)}$ decays (often, important inputs in B decays). Charm productions in continuum (i.e., $\psi(3770) \rightarrow D\overline{D}$ line shape).

Charm Decays

I will briefly go through some of the recent experimental results in these three topics today

Quantum concrence

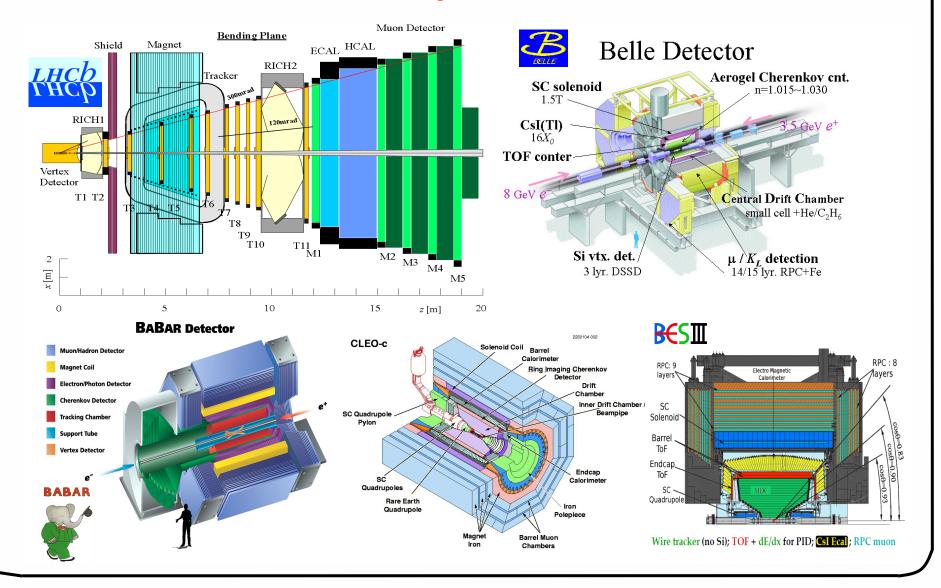
Use the quantum-correlated Charm mesons

- usually produced at mass threshold → relevant experiments: CLEO-c/BESIII.
- can extract DD mixing parameters.
- can also help the γ/φ_3 measurement (i.e., via the GGSZ method).

Outline

1.Rare/Forbidden searches

- Experimental limits are starting to reach BF~10⁻⁹ and starting to overlap some non-SM predictions.
- Will go through two recent results on FCNC transitions.

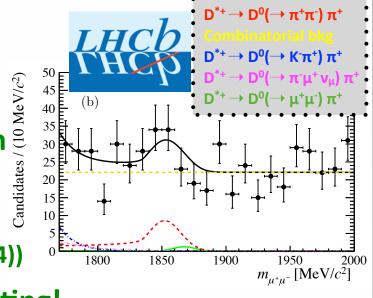

2.Leptonic and semi-leptonic decays.

- Access to CKM matrix elements, V_{cd(s)}.
- Will go through recent results on D⁰ and D⁺ decays.

3. Quantum-Correlated Charm analyses

- Provide access to the mixing parameters.
- can also contribute the γ/ϕ_3 measurement.
- Will go through the recent measurements of $\delta_{K\pi}$, y_{cp} , as well as the c_i and s_i .

All results are from Modern Heavy Flavor Factories

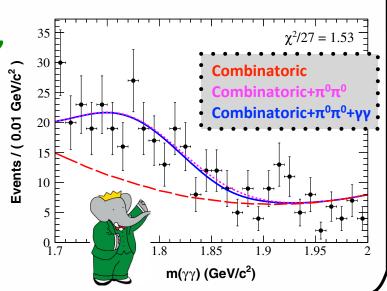


Why Rare Charm Decay?

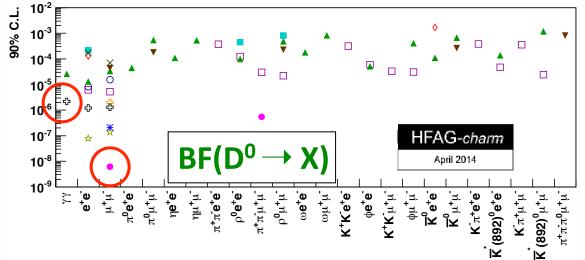
- Charm is unique.
 FCNC transitions are highly suppressed in the SM.
 - mediated by the lighter down-quark sector.
 - more effective GIM suppression here than in B decays.
- That is, the "SM noise" is much lower in Charm! (non-existent at current experimental limits)
 Of course, this does not mean the signature of new Physics (NP) is larger in Charm, however.
- Observing or even NOT observing rare decays help to constrain effects from NP.

$D^0 \rightarrow \mu^+ \mu^-$

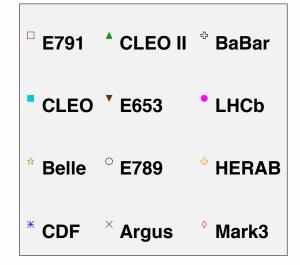

- Expect small short distance contribution:B(D⁰→ μ⁺μ⁻) ~10⁻¹⁸.
- The long distance might be dominated by the two photon intermediate state; $B(D^0 \to \mu^+ \mu^-) \sim 2.7 \times 10^{-5} \times B(D^0 \to \gamma \gamma)$ (PRD66, 014009 (2002)). If we take $B(D^0 \to \gamma \gamma) < 2.2 \times 10^{-6}$ @90% C.L. (PRD85, 091107 (2012)), then $B(D^0 \to \mu^+ \mu^-) < 6 \times 10^{-11}$.
- LHCb (PLB725, 15 (2013)
 - $-B(D^0 \rightarrow \mu^+ \mu^-) < 6.2 \times 10^{-9} @ 90\% C.L.$
 - Still some room to reach the prediction
 - Some BSM predict BF ~ 10⁻¹⁰
 (R-parity violation, PRD66, 014009 (2002);
 Warped extra dimensions, PRD90, 014035 (2014))


More data at LHCb would be very interesting!

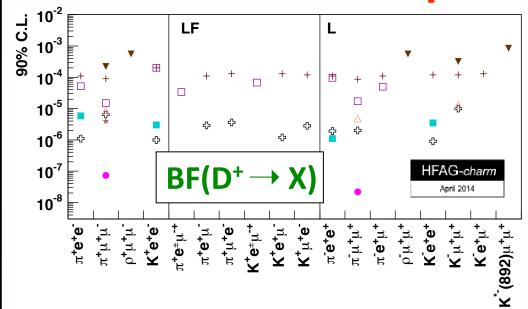
$D^0 \rightarrow \gamma \gamma$


- Forbidden by the tree level.
- Short distance: BF ~ 10⁻¹¹ (PRD66, 014009)

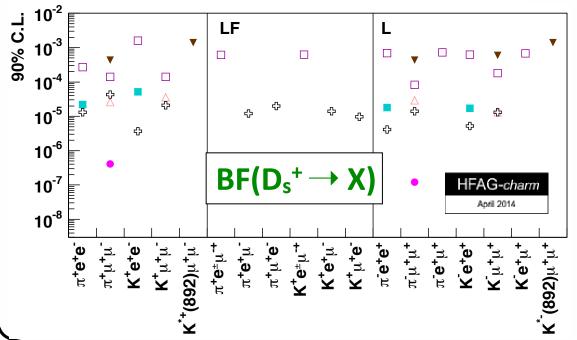
- MSSM could enhance the rate up to ~10⁻⁶ (c →u γ via gluino exchange)
 (PLB500, 304 (2001)).
- BaBar (PRD85, 091107(R) (2012)):
 - Reconstruct through $D^{*+} \rightarrow D^0(\rightarrow \gamma \gamma) \pi^+$, normalized by $D^{*+} \rightarrow D^0(\rightarrow K_S \pi^0) \pi^+$.
 - Peaking background from $D^0 \rightarrow \pi^0 \pi^0$.
 - $-B(D^0 \rightarrow \gamma \gamma)$ < 2.2×10⁻⁶ @ 90% C.L.



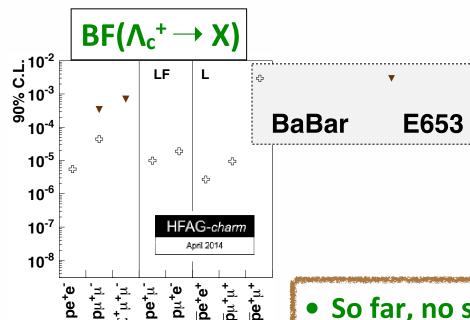
Experimental status in Charm decays - I (from HFAG 2014)



- LHCb ULs are now reaching ~10⁻⁷-10⁻⁸ level.
- B factories are doing well, reaching 10⁻⁶-10⁻⁷ level.
 Looking forward to the Belle II!



Experimental status - II



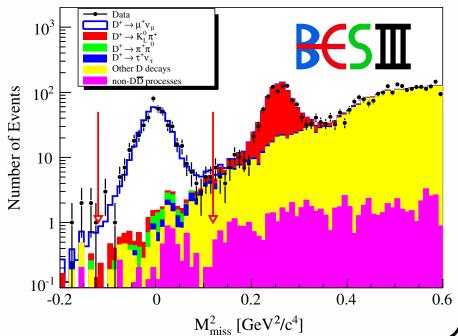
Experimental status - III

- So far, no surprises.
- LHCb upgrade and Belle II are on the horizon.
- Should be able to see some of the listed rare decays soon
 - ... or we may see a surprise!?

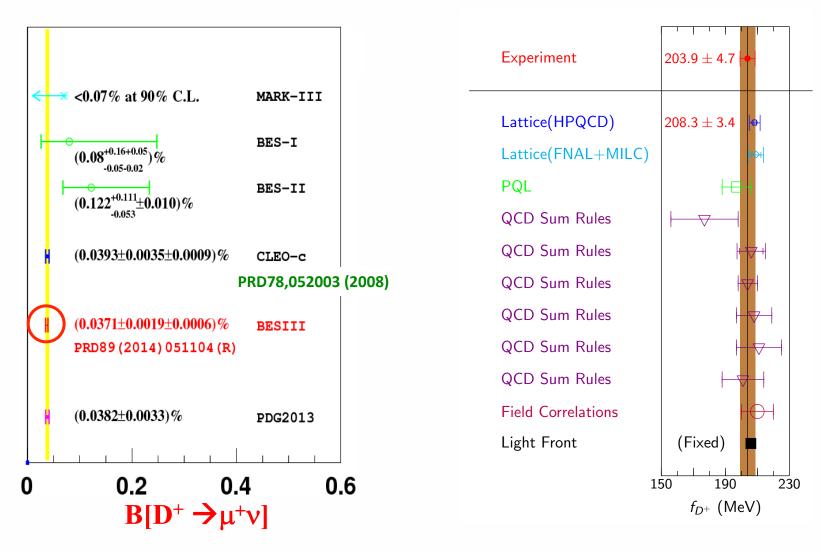
Recent results in leptonic and semi-leptonic decays of Charm mesons

Leptonic decays $D_{(s)}^+ \rightarrow I + v_I$

$$D^{+} \int_{\overline{d}}^{W^{+}} \int_{V}^{W^{+}} \Gamma\left(D^{+} \rightarrow \ell^{+} v_{\ell}\right) = \boxed{f_{D}^{2} |V_{cd}|^{2}} \frac{G_{F}^{2}}{8\pi} m_{D} m_{\ell}^{2} \left(1 - \frac{m_{\ell}^{2}}{m_{D}^{2}}\right)^{2}$$

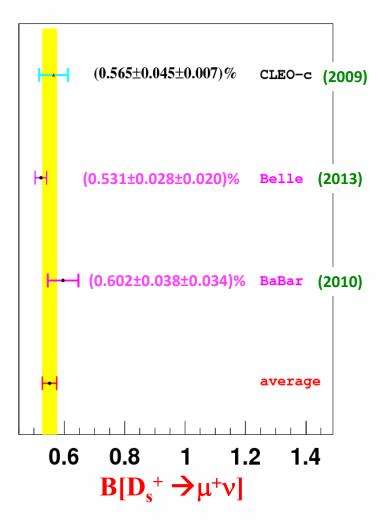

- With the knowledge of |V_{cd(s)}|,
 extract the decay constant, f_{D(s)} → compare to the Lattice QCD
 → validate the Lattice QCD calculations in f_{B(s)}.
- Or vice versa: Taking the calculated f_{D(s)},
 extract |V_{cd(s)}| to help to over-constrain the CKM unitarity.
- Also interesting is:

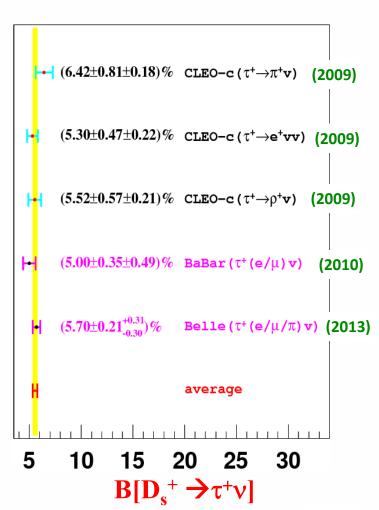
$$\Gamma(D^+ \to \tau^+ \, \nu_\tau) : \Gamma(D^+ \to \mu^+ \, \nu_\mu) : \Gamma(D^+ \to e^+ \, \nu_e) = 2.67 : 1 : 2.35 \times 10^{-5}$$
 comes with the minimal uncertainties. (masses of the meson and the lepton) But $D^+ \to \tau^+ \, \nu_\tau$ has not been seen, yet. BF<1.2×10⁻³ @90% CL: CLEO PRD78,052003 (2008)


Notice: this UL is ~3.14×BF(D⁺ $\rightarrow \mu^+ \nu_\mu$). Could BESIII see this?

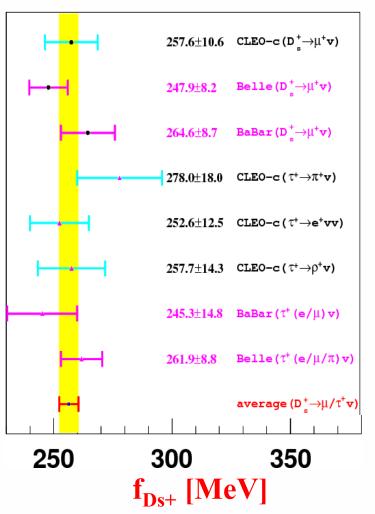
$$D^+ \rightarrow \mu^+ \nu_{\mu}$$

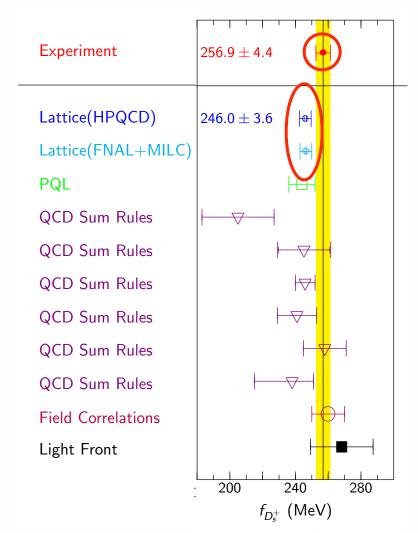
- BESIII (PRD89, 051104(R) (2014)) : 2.9 fb⁻¹ at $E_{cm} = 3.773$ GeV.
- Measured B(D⁺ \rightarrow μ ⁺ ν_{μ}) = (3.71±0.19±0.06)×10⁻⁴ The most precise measurement to date.
 - With $|V_{cd}|$ of CKM-fitter input, $f_{D+} = (203.2\pm5.3\pm1.8)$ MeV
 - With f_{D+} of LQCD input (PRL100, 062002 (2008)) $|V_{cd}| = 0.2210\pm0.0058\pm0.0047$.
- Statistically limited.
 More data would be welcome.
- BESIII plans to take
 ~10 fb⁻¹ in the future!



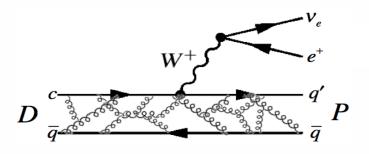

Comparison of B(D⁺ $\rightarrow \mu^+ \nu_\mu$) and f_{D+}

Good consistencies are seen among the previous experimental results.


Comparison of $B(D_s^+ \rightarrow (\mu^+/\tau^+) \nu_{\mu})$

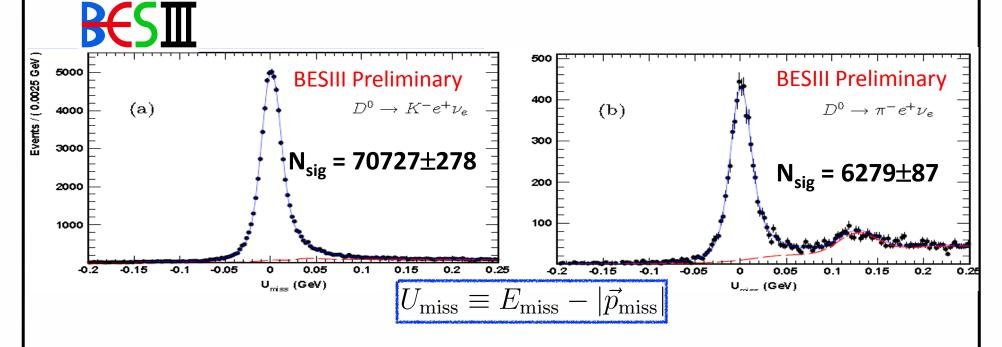


- Similar results in the Charmed strange meson.
- Good overall consistency in BFs.


Comparison of f_{Ds}

- Reasonable consistencies.
- BESIII plans to have a dedicated D_S data taking in the near future.

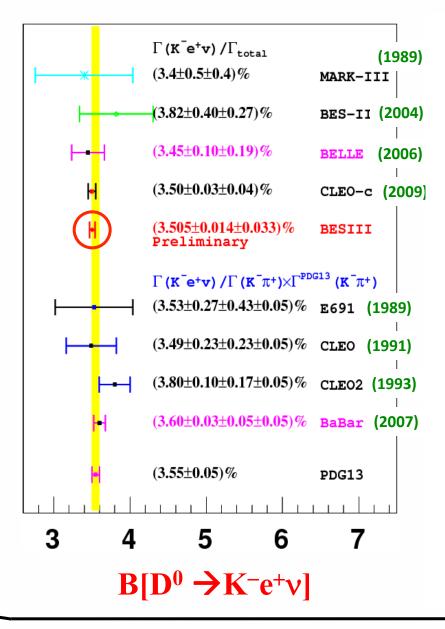
Semi-Leptonic decays $D_{(s)}^+ \rightarrow P + I + v_I$

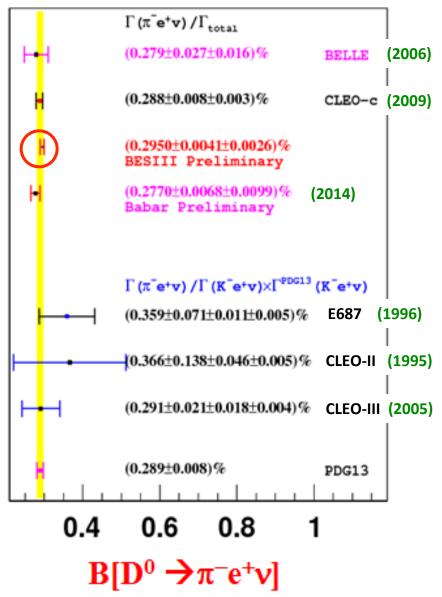


$$\frac{d\Gamma(D \to K(\pi)ev)}{dq^2} = \frac{G_F^2 \left| V_{cs(d)} \right|^2 P_{K(\pi)}^3}{24\pi^3} \left[f_+(q^2) \right]^2$$

$$q^2 = (p_l + p_v)^2 \implies M^2_{inv}$$

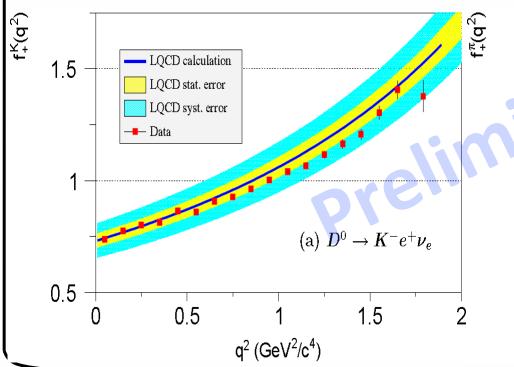
of lepton pair

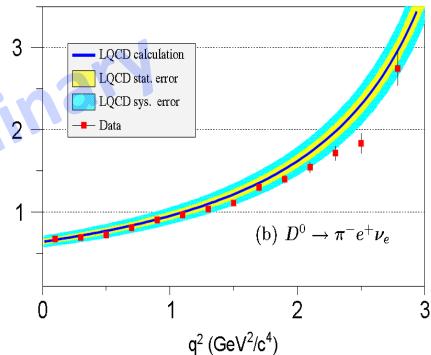

- Essentially measure $|V_{cd(s)}| \times |f(q^2)|$.
- Input $|V_{cs(d)}| \rightarrow$ extract $|f(q^2)| \rightarrow$ compared to the LQCD. Validating the FF calculations of LQCD here is important i.e., the measurement of $|V_{ub}|$ via $B \rightarrow \pi l \nu$ has a large dependence on the "theoretical input (its FF)" from LQCD.
- Or vice versa:
 Input |f(q²)| from LQCD → extract |V_{cs(d)}|
 → constrain the CKM unitarity.


$D^0 \rightarrow K/\pi e^+ \nu_e$

- BESIII : 2.9 fb⁻¹ at $E_{cm} = 3.773$ GeV.
- U_{miss} ~ 0 if the missing particle is a neutrino.
- The resultant BFs are consistent with the previous measurements (see the next slide).
 Most precise to date.

Comparison of $B(D^0 \rightarrow (K/\pi)^- e^+ \nu_e)$

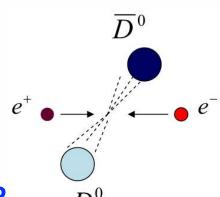

Comparison of form factors


• Points: BESIII

Curves: Fermilab Lattice, MILC, and HPQCD (PRL94, 011601 (2005))
 Fermilab Lattice and MILC (PRD80, 034026 (2009))
 Based on the BK model (PLB478, 417 (2000))

• Consistent with each other.

• Would be nice to have an even larger sample to probe the higher q² bins.



Quantum Coherence in e⁺e⁻ annihilation near Charm mass threshold

The decay rate of a correlated state

At E_{cm}^{\sim} M($\psi(3770)$), a pair of $D^0\overline{D^0}$ is produced via $e^+e^- \rightarrow \gamma^* (\rightarrow \psi(3770)) \rightarrow D^0\overline{D^0}$.

This obeys the following selection rules on the produced pair of D mesons.

- ▶ The two produced neutral mesons must have opposite CP (i.e., see Goldhaber and Rosner, PRD15, 1254 (1977). For instance,
 - ▶ $D^0 \rightarrow$ CP+ final states (such as K⁺K⁻) AND $\bar{D}^0 \rightarrow$ CP+ final states (such as $\pi^+\pi^-$) does NOT happen. And (CP-, CP-) combo does not happen either.
 - → can be used to suppress backgrounds.
 - ▶ $D^0 \rightarrow CP+$ final states (such as K^+K^-) AND $\bar{D^0} \rightarrow CP-$ final states (such as $K_S\pi^0$) are maximally enhanced (doubled). That is, the measured $BF_{eff}(D^0 \rightarrow K_S\pi^0)$ is twice as $BF(D^0 \rightarrow K_S\pi^0)$ with no such coherence effect on the parent D.

The decay rates in mixed CP final states

- ▶ $D^0 \rightarrow CP+$ final states (such as K⁺K⁻) AND $D^0 \rightarrow$ generically (not look at its decay experimentally). This decay rate (e.g., $D^0 \rightarrow K^+K^-$) is not affected.
- ▶ D^0 → Flavored final states (CF+DCSD, such as $K^-\pi^+$) AND D^0 → CP± final states.

The rates are still affected due to the interference between CF and DCS.

 \rightarrow extract $\delta_{K\pi}$, where $\langle K^-\pi^+|\bar{D}^0\rangle/\langle K^-\pi^+|D^0\rangle = -r\cdot e^{-i\delta}$.

For multi-body (such $K_s\pi^+\pi^-$), one can obtain the δ , averaged over each bin of a Dalitz distribution.

The decay rates in semi-leptonic decays

On the other hand, for the case of semi-leptonic decay, such as

D⁰ → K⁻e⁺v (only the CF mode!) AND

 $\overline{D^0} \rightarrow CP \pm$ final states, there is no interference.

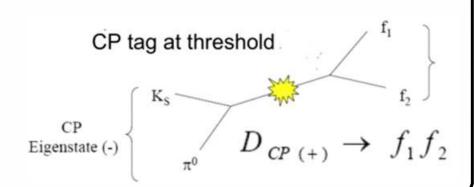
Its decay rate does not depend on the CP content of its parent D.

Yet, the total width of its parent D depends on CP.

For instance,

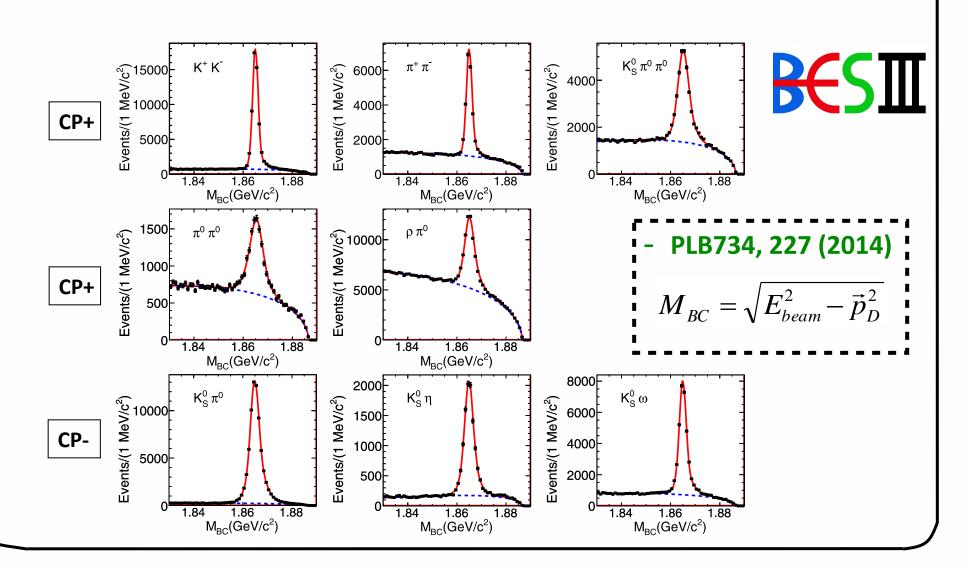
$$N(D^0 \to K^-e^+v; \overline{D^0} \to CP\pm)/N(\overline{D^0} \to CP\pm) = B_{eff}(D^0 \to K^-e^+v)$$

= $B(D^0 \to K^-e^+v) \times \Gamma/\Gamma_{CP\pm}$
 $\simeq B(D^0 \to K^-e^+v) \times (1\pm y)$ (neglecting terms with y^2 or higher).


→ can extract the y via semi-leptonic tags.

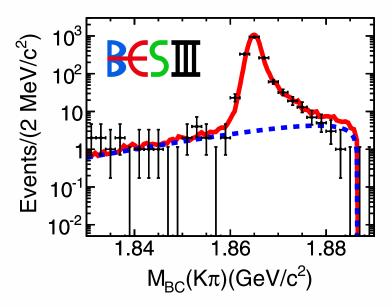
The latest measurement of $\delta_{K\pi}$ from BESIII

- ▶ In D⁰ → Kπ decays, its CF and DCSD interfere. The ratio of the two amplitudes is $\langle K^-\pi^+|\bar{D}^0\rangle/\langle K^-\pi^+|D^0\rangle = -r\cdot e^{-i\delta}$.
- ► Neglecting higher orders in the mixing parameters (e.g., y²), one can arrive at the following relation:


$$A_{CP \to K\pi} = r \cdot cos\delta_{K\pi} + [D-mixing correction (y and R_{WS})]$$

where $A_{CP \to K\pi} = CP$ -tagged rate asymmetry
= $[B(D_2 \to K^-\pi^+) - B(D_1 \to K^-\pi^+)]/B(D_2 \to K^-\pi^+) + B(D_1 \to K^-\pi^+)].$

B(D_{1,2}→Kπ) can be measured by tagging one D (tag side) with exclusive CP-eigenstates which then defines the eigenvalue of the other D.



$D \rightarrow CP$ states

(no requirement on how the other D decays)

$D_{1,2} \rightarrow K\pi$, $D_{2,1} \rightarrow CP$ states

- Example fit for the case of $(K\pi, K_S\pi^0)$
- PLB734, 227 (2014)

- Measured $A_{CP\to K\pi}$ = (12.77±1.31(stat.)+0.33_{-0.31}(syst.))%.
- With external inputs from HFAG2013 and PDG (for y and R_{WS}) $cos\delta_{K\pi} = 1.03\pm0.12(stat.)\pm0.04(syst.)\pm0.01(external)$.
- This result is consistent with and more precise than the recent CLEO-c result (PRD86, 112001 (2012)):

$$\cos \delta_{K\pi} = 1.15^{+0.19}_{-0.17} (\text{stat.})^{+0.00}_{-0.08} (\text{syst.}).$$

Could also determine the mixing parameter, y_{CP}

- y_{CP} is defined as;

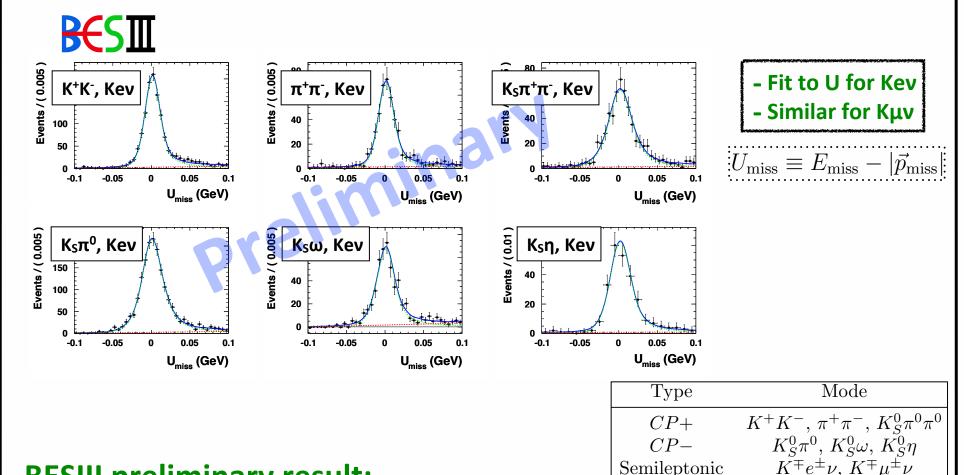
$$|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle |D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$$

$$2 \cdot y_{CP} = (|q/p| + |p/q|) \cdot y \cdot \cos \varphi - (|q/p| - |p/q|) \cdot x \cdot \sin \varphi,$$

where p and q are mixing parameters, and $\phi = arg(q/p)$ is the weak phase difference of the mixing amplitudes.

Notice: for no CPV case, $p = q = 1/\sqrt{2}$ and $y_{CP} \equiv y$.

- From the fact that

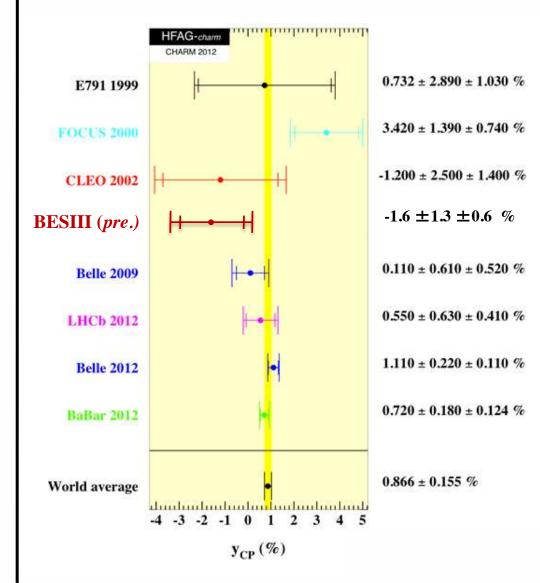

semileptonic BF of $D_{1,2}$, $B(D_{CP\pm} \rightarrow I)$,

gets modified by a factor of 1±y_{CP},

and neglecting terms with y² (or higher), one can arrive at

$$y_{CP} pprox \frac{1}{4} \left(\frac{\mathcal{B}_{D_{CP-} \to l}}{\mathcal{B}_{D_{CP+} \to l}} - \frac{\mathcal{B}_{D_{CP+} \to l}}{\mathcal{B}_{D_{CP-} \to l}} \right)$$

Extracting y_{CP} in BESIII data



BESIII preliminary result;

 $y_{CP} = [-1.6\pm1.3(stat.)\pm0.6(syst.)]\%$.

Most precise result based on QC Charm mesons. Having a larger sample would be a help.

Comparison with other measurements

- Our result is consistent with the world average (HFAG2013; this preliminary result is not included in the average).
- Also consistent with the latest result from CLEO-c (PRD86, 112001 (2012));

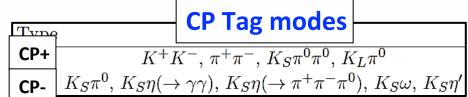
 $y_{CP} = (4.2 \pm 2.0 \pm 1.0)\%.$

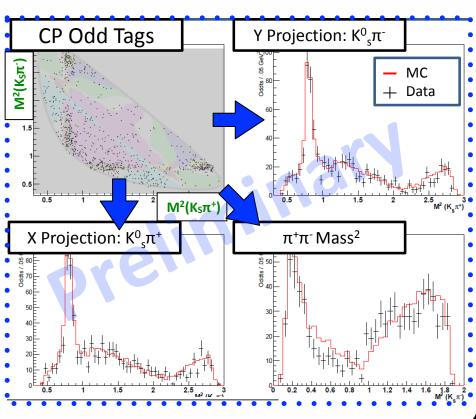
(not listed in the figure).

Can also contribute to the measurement of γ/φ3

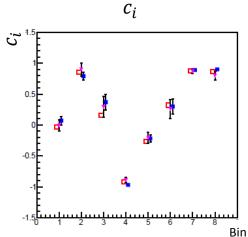
- B factories can measure γ/ϕ_3 through B \rightarrow D K.
- The latest comes from the LHCb (arXiv:1408.2748) via the GGSZ method in $D^0 \rightarrow K_S \pi \pi^-$ and $K_S K^+ K^-$.
- Measured γ = $(62^{+15}_{-14})^{\circ}$ (along with r_B = $0.080^{+0.019}_{-0.021}$ and δ_B = $(134^{+14}_{-15})^{\circ}$). A single most precise measurement of γ to date.
- They needed inputs, c_i and s_i : cosine and sine of the strong-phase difference between the D⁰ and \overline{D}^0 decay, averaged in each Dalitz bin, i.
- Took the CLEO-c (statistically limited) results (PRD82, 112006, (2010)).
- BESIII has recently repeated this CLEO-c analysis based on their data which is ~3.5× larger than that of CLEO.

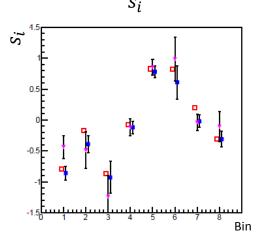
Relations between c_i, s_i, and yields in Dalitz bins

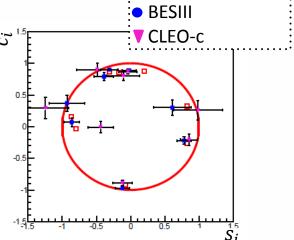

- One could derive the following relations between efficiency-corrected yields in the ith Dalitz bins and c_i (s_i) (see backups more details and PRD82, 112006 (2010)).
 - For the case of D \rightarrow CP states AND D \rightarrow K_S $\pi^+\pi^-$: Yields in ith bin $\propto \pm c_i$
 - For the case of D \rightarrow K_S $\pi^+\pi^-$ AND D \rightarrow K_S $\pi^+\pi^-$: Yields in ith and jth bins of the two Dalitz plots $\propto c_i c_j + s_i s_j$
- Simultaneously fit to these "Yields in each bin" to extract c_i and s_i .
- One could also gain statistical power by employing $K_L \pi^+ \pi^-$.


BESI

For the case of "CP tag vs $K_S\pi^+\pi^-$ "


- Data is using the full 2.9 fb⁻¹ $\psi(3770)$ dataset
- Results presented here will be using Optimal Binning scheme.





Model prediction:

Preliminary result

- Only statistical uncertainties are shown in the optimal binning scheme (which dominate in most of the bins).
- Consistent results with the previous CLEO-c measurement, but statistically superior.
- What this result could do to the γ/φ₃ is, if we take the Belle's Dalitz result (PRD85, 112014 (2012)), γ (in degrees) = $77.3^{+15.1}_{-14.9}$ (stat.) ± 4.2 (syst.) ± 4.3 (c_i/s_i) \rightarrow ± 2.5 (c_i/s_i) We expect the uncertainly would be reduced by ~40%
- Very important inputs for the future analyses by LHCb and Belle II, where the statistical sensitivity starts to reach ~1~2 degrees.

Summary

- Searches for rare/forbidden Charm decays are finally becoming interesting (exciting) with LHCb upgrade and Belle II on the horizon.
- Leptonic and semi-leptonic decays in Charm provide access to $|V_{cx}|$ and complementary to the B Physics. Having even larger Charm samples at BESIII improves the current results further.
- Quantum-correlated D⁰D

 in e⁺e⁻ annihilations near threshold:
 - provides an unique way to measure the Charm mixing parameters.
 - also can provide precise measurements on c_i and s_i .

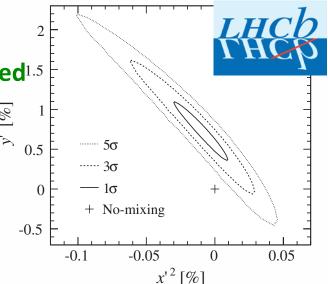
Backups

D⁰D mixing

- Observation of DD mixing, first seen by the
 B factories (HFAG: arXiv 1207.1158) and now observed
 by LHCb: PRL110, 101802 (2013).
- DD mixing is conventionally described by two parameters:

$$x = 2(M_1-M_2)/(\Gamma_1+\Gamma_2), y = (\Gamma_1-\Gamma_2)/(\Gamma_1+\Gamma_2),$$

where $M_{1,2}$ and $\Gamma_{1,2}$ are the masses and widths of the neutral D meson mass eigenstates.

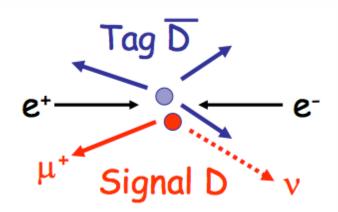

(Flavor eigenstates, D^0/\bar{D}^0 , are not the same as mass eigenstates, D_1/D_2)

Or
$$x' = x \cdot \cos \delta_{K\pi} + y \cdot \sin \delta_{K\pi}$$
, $y' = y \cdot \cos \delta_{K\pi} - x \cdot \sin \delta_{K\pi}$.

- $\delta_{K\pi}$ is the strong phase difference between the doubly Cabibbo suppressed (DCS) decay, $\overline{D^0} \to K^-\pi^+$ and the Cabibbo favored (CF) decay, $D^0 \to K^-\pi^+$ or $\langle K^-\pi^+|D^0\rangle/\langle K^-\pi^+|D^0\rangle = -r \cdot e^{-i\delta}$.

So one can connect (x,y) with (x',y') via $\delta_{K\pi}$.

- For this part of my talk, I present preliminary results on $\delta_{K\pi}$ and y using the quantum correlation between the produced D^0 and \overline{D}^0 pair in data taken at BESIII. This will then improve the determination of the mixing params, (x,y).


Reconstructing events with a neutrino

- Reconstruct the all decay particles, except the neutrino.
- At CLEO-c and BESIII, where they take the data close to the mass threshold (i.e., e⁺e⁻ → (ψ(3770)) → DD), one can reconstruct one of the D mesons fully (tag side), while the other D is reconstructed, except the neutrino (signal side). The existence of neutrino can be inferred by a missing variable such as;

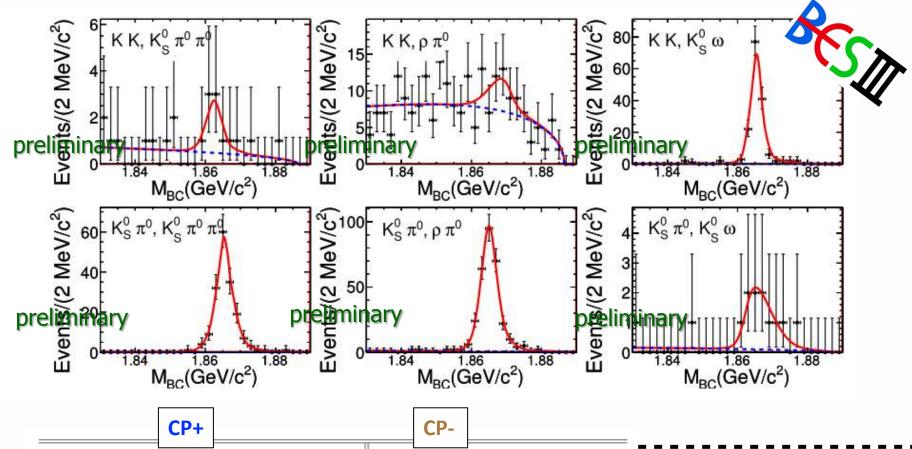
$$M_{\text{miss}}^2 = (E_{\text{beam}} - E_{\mu^+})^2 - (-\vec{p}_{D_{\text{tag}}} - \vec{p}_{\mu})^2$$

for the case of $D^+ \rightarrow \mu^+ \nu_{\mu}$.

M²_{missing} ~ 0 for the signal events.

Measuring $B(D_{CP\pm} \rightarrow K^-\pi^+)$

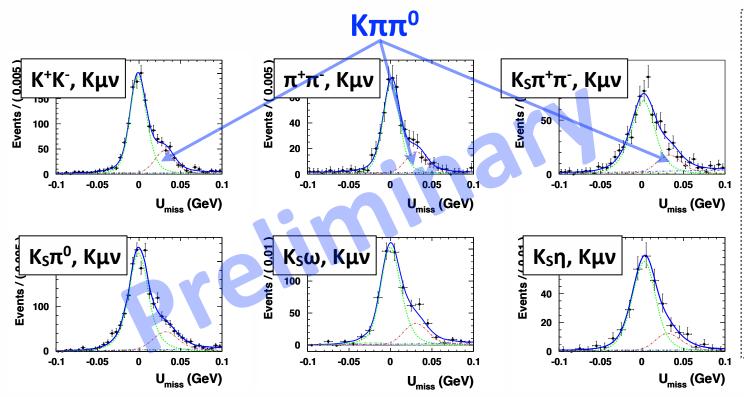
- Double-Tag technique:
 - $B(D_{CP\pm} \to K\pi) = [B(D_{CP\mp} \to CP^{\mp} \text{ states}) \times B(D_{CP\pm} \to K\pi)]/B(D_{CP\mp} \to CP^{\mp} \text{ states}).$ So they need to measure;
 - Yields (BF) when one D decays a CP final state while the other D decays generically
 - Yields (BF) when one D decays a CP final state while the other D decays into $K\pi$.


• CP states they employ (8 modes):
$$CP+ K^+K^-, \pi^+\pi^-, K_S^0\pi^0\pi^0, \pi^0\pi^0, \rho^0\pi^0 \\ CP- K_S^0\pi^0, K_S^0\eta, K_S^0\omega$$

where we reconstruct $K_S \rightarrow \pi^+\pi^-$, $\pi^0/\eta \rightarrow \gamma\gamma$, $\omega \rightarrow \pi^+\pi^-\pi^0$, $\rho \rightarrow \pi^+\pi^-$.

 Notice that most of systematics on the tag side get canceled in $B(D_{CP\pm}\rightarrow K\pi)$.

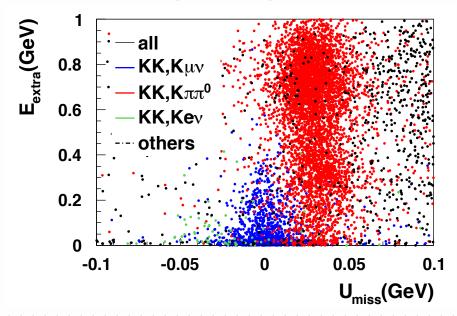
The remaining systematics (reconstruction/simulation) of $K\pi$ are also canceled in the determination of $A_{CP\to K\pi}$.


The selection rule can be seen in data

:	Mode	Yield(tag KK	efficiency(%)	Yield(tag $K_S^0 \pi^0$)	${\it efficiency}(\%)$
CP+	$K^0_S\pi^0\pi^0$	$8 \pm 3(*)$	11.80 ± 0.11	171 ± 14	7.20 ± 0.09
CP+	$\rho\pi^0$	$13 \pm 8(*)$	24.44 ± 0.16	299 ± 19	15.87 ± 0.16
CP-	$K_S^0 \omega$	158 ± 13	11.02 ± 0.11	7 ± 3(*)	6.77 ± 0.08

- *** Consistent with zero.**
 - * Consider as one of the systematics.

Yields of Kμν in double tags (n_{Kμν,CP∓}) (reconstruct CP-final states from one D decay, with "Kμν" from the other D)


- $K\pi\pi^0$ shapes and sizes are fixed based on control samples of actual data.
- The control samples are obtained by the same CP states and $K\pi\pi^0$, while ignoring the two photons from π^0 decays to calculate U_{miss} .

See the next slide for detail.

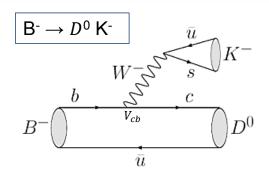
- Signal shape: MC shape, convoluted with an asymmetric Gaussian.
- Background: A 1st order polynomial. $K\pi\pi^0$ (dominant).

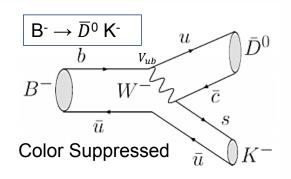
Fixing the Kππ⁰ shape

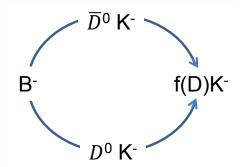
- Obtain E_{extra} ≡ Sum of the all un-used energies deposited in EM calorimeter.
- E_{extra} tends to be larger if it is $K\pi\pi^0$ due to the ignored extra photons from π^0 decay and is small if it is $K\mu\nu$.
- We actually do require E_{extra} <0.2 GeV to select $K\mu\nu$ signal candidates.

Fix shape

- Fit to U_{miss} in $E_{extra}>0.5$ GeV where $K\mu\nu$ peak is suppressed.
- The fitted shape
 ■ MC shape,
 convoluted with a Gaussian.

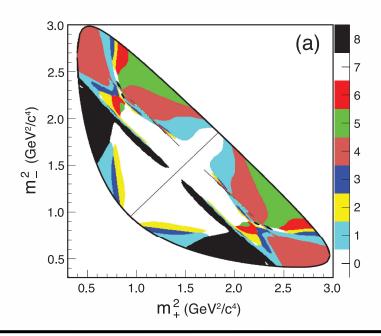

Fix size

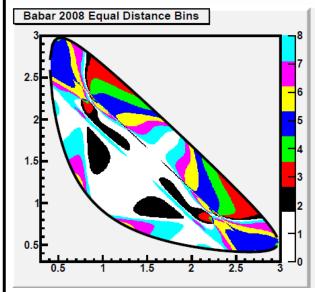

(Kππ⁰ yields in data in E_{extra}<0.2 GeV) = R×(Kππ⁰ yields in data in E_{extra}>0.5 GeV), where R = (Kππ⁰ yields in MC in E_{extra}<0.2 GeV)/(Kππ⁰ yields in MC in E_{extra}>0.5 GeV).


Can also contribute to the measurement of γ/φ₃

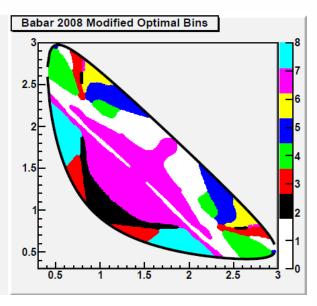
- Extract the γ through the measurement of the interference between $b \rightarrow c$ and $b \rightarrow u$ when both D^0 and \overline{D}^0 decay to the same final state, f(D).

 $A_{B\pm} \propto A_D + r_B e^{i(\delta B \pm \gamma)} A_D^-$ (where r_B is $|\langle B^- \rightarrow D^0 K^- \rangle| / |\langle B^- \rightarrow D^0 K^- \rangle|$). δ_B is the strong phase difference).





Can also contribute to the measurement of γ/φ3


- This is one of the popular binning scheme, "Optimal binning", where bins are adjusted to maximize the sensitivity to γ/φ_3 (CLEO: PRD82, 112006 (2010)).
- BESIII has recently repeated this analysis based on their data which is
 ~3.5× larger than that of CLEO.

c_i and s_i in $D^0 \rightarrow K_{S,L} \pi^+ \pi^-$ Dalitz analysis

Result of splitting the Dalitz phase space into 8 equally spaced phase bins based on the BaBar 2008 Model.

Starting with the equally spaced bins, bins are adjusted to optimize the sensitivity to γ . A secondary adjustment smooths binned areas smaller than detector resolution.

Similar to the "optimal binning" except the expected background is taken into account before optimizing for γ sensitivity.

Source: CLEO Collaboration, Physical Review D, vol 82., pp. 112006 - 112035

Equation on calculating c_i

For the CP tag modes, one can show that the total bin yields are related to c_i by

$$M_i^{\pm} = \frac{S_{\pm}}{2S_f} (K_i \pm 2c_i \sqrt{K_i K_{-i}} + K_{-i})$$

 $M_i^+(M_i^-)$ yields in each bin of Dalitz plot for CP even(odd) modes.

 $S_+(S_-)$ number of single tags for CP even(odd) modes.

 S_f number of single tags for flavor modes.

 $K_i(K_{-i})$, yields in each bin of Dalitz plot in flavor modes.

Single Tag modes

Type	Tag List
Pseudo-Flavored	$K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{+}\pi^{-}$
S^+	$K^+K^-, \pi^+\pi^-, K_S\pi^0\pi^0, K_L\pi^0$
S^-	$K_S\pi^0$, $K_S\eta(\to\gamma\gamma)$, $K_S\eta(\to\pi^+\pi^-\pi^0)$, $K_S\omega$, $K_S\eta'$

Calculating both c_i and s_i

Using $D^0 \to K_s \pi^+ \pi^- \text{ vs } \overline{D}{}^0 \to K_s \pi^+ \pi^- \text{ we can calculate both } c_i \text{ and } s_i$:

$$M_{i,j} = \frac{N_{D,\overline{D}}}{2S_f^2} \left(K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j) \right)$$

 $M_{i,j}$ yields in bin i of first Dalitz plot and bin j of second Dalitz plot. S_f number of single tags for flavor modes. $N_{D,\overline{D}}$ total number of $D^0\overline{D}^0$ events. $K_i(K_{-i})$, yields in each bin of Dalitz plot in flavor modes.