Online measurement and monitoring of the beam spot using fast vertexing

David W. Miller, Rainer Bartoldus, Su Dong

Stanford University SLAC

SLAC ATLAS Forum

D.W. Miller (Stanford, SLAC)

Motivation and goals

Primary motivation and Goals

- Provide feedback for L2 b-tagging
 - Must know nominal beam position for impact parameter calculation
- Provide beam info to LHC

How we do it

- Use L2 vertexing to fit tracks into primary vertices
- Histogram parameters and monitor on ~lumi block time-scale
- Gather statistics from many HLT nodes and feedback
- Pass requested parameters to LHC (tilt, luminous region centroids, X, Y, Z profile)

L2 b-tagging

Light quark jet rejection vs. b-jet efficiency for beam spot offset $(0,25,50,100 \ \mu m)$

Design of the L2 beam spot algorithm

Online and offline

Both offline and online (i.e. "High Level Trigger") versions of the beam spot measurement with primary vertices are available for testing.

Design

- Run preferentially on ROI's selected for track reconstruction
 - Beam spot finder may need to initiate track reco for fraction of ROI's if "seed" slices (e.g. *b*-jet) are pre-scaled or off
- Implement internal track selection criteria
- Utilize L2PrimaryVertexFitter for fast vertexing on selected tracks (see next slide)
- Bin resulting fit parameters in X vs. Z and Y vs. Z
 - Measure beam profile at each Z, extract beam tilt angle
- Results delivered to monitoring infrastructure in form of 1D/2D histograms
 - Light weight for collective result extraction

A

Use of tracking and vertexing online

Tracking

- L2 Tracks assumed to be reconstructed already (in current version)
 Loop over all tracks, select via kinematic and quality criteria
 - configurable in job options
- Monitored variables (kinematics, tracking) stored, counters updated

Vertexing

- Using selected tracks only, cluster in Z using high p_T "seed" track
 Iterate until tracks in cluster rejected or collected
 - stick into 2D vector: vector of track clusters
- Fit tracks in each cluster with L2PrimaryVertexFitter
 - (ATL-DAQ-CONF-2007-028)
 - cluster skipped if fit does not converge
 - Runs in linear time with N_{track} to be fitted
- Monitored variables stored
- Vertex selection via fit quality, precision, kinematics
- 2D histogram of X and Y vs. Z filled for selected vertices

First look at L2 online beamspot vertexing algorithm

Fast primary vertex fit timing

Fit	Mean (ms)	RMS (ms)	Niterations	$\langle N_{track} \rangle$
PrimaryVertexFit	0.225875	0.631937	32	15

PrimaryVertexFitter

Fast L2 primary vertex fitter is adapted from the *B*-physics group's (Dmitry Emeliyanov's) fast secondary vertex fitter which is optimized for the specific structure of the L2 tracks and low track multiplicity vertices.

- Utilizes only 2 × 2 symmetric sub-matrices of the fit covariance matrix
- No smoothing pass is needed: as soon as the last track is processed the full estimate of the fit is available
- Trigger element used to seed the vertexing for tests: L2_eNoCutID
- Simply gave lots of tracks, this will of course have to be optimized, accounted for and recorded

D.W. Miller (Stanford, SLAC)

L2 fast vertexing is functioning, but work to do

- These data contain di-jet (J4) events produced with no beam offset and misaligned geometry, reconstructed with Release 14.0.0.
- Redundant tracks found by several trigger elements needs to be accounted for (currently is not).
- Bug in loop over clusters causes some to appear many (10's) of times (see spikes in plot). Fixed.

Vertex fit quality

D.W. Miller (Stanford, SLAC)

Online beam spot measurement

May 7, 2008 7 / 15

Vertexing precision

D.W. Miller (Stanford, SLAC)

First look using offline algorithms in sim. & FDR-1

Can develop a feel for the beam spot measurements using offline version of algorithm

First look using offline algorithms in sim. & FDR-1

Can develop a feel for the beam spot measurements using offline version of algorithm

First look using offline algorithms in sim. & FDR-1

Can develop a feel for the beam spot measurements using offline version of algorithm

Beam spot precision: 75K $t\bar{t}$ events

2D correlation: σ_y vs. σ_x [mm]

D.W. Miller (Stanford, SLAC)

Beam spot precision: 75K J3 events

2D correlation: σ_y vs. σ_x [mm]

D.W. Miller (Stanford, SLAC)

Online beam spot measurement

11/15

Beam spot precision: 75K J3 events

2D correlation: σ_v vs. σ_x [mm]

D.W. Miller (Stanford, SLAC)

Online beam spot measurement

May 7, 2008

11/15

Beam tilt angle distributions in FDR-1

Min bias stream (X vs. Z)

Min bias stream (Y vs. Z)

12/15

D.W. Miller (Stanford, SLAC)

Beam tilt angle in FDR-1: difference between streams!

Min bias stream (X vs. Z)

D.W. Miller (Stanford, SLAC)

Online beam spot measurement

May 7, 2008

Beam tilt angle in FDR-1: difference between streams!

D.W. Miller (Stanford, SLAC)

Online beam spot measurement

May 7, 2008 1

13/15

Beam tilt angle timeline (FDR-1, steps of 10 LB)

Min bias stream (X vs. Z)

D.W. Miller (Stanford, SLAC)

Beam tilt angle timeline (FDR-1, steps of 10 LB)

D.W. Miller (Stanford, SLAC)

Conclusions

Status

- Online algorithm is under testing (bugs already found)
- Rapid development and testing is needed to meet urgent schedule
- Precision and timing look very promising for L2

Next steps

- Must ensure robustness against misalignment and "random" initial position of beam
 - very important for track selection, for example
- Infrastructure for monitoring, persistification of beam spot results, and feedback to LHC and L2 seen as most crucial action items
 - Formalize specifications for gatherer, parameter extraction and distribution
 - Standardize usage of beam spot measurement results in HLT algos
- Determination of optimal TE configuration necessary
 - From jet rates, get 75K events (above L1_J35) in \sim 2.5 minutes \approx 1 LB
- Thorough algorithm execution time and optimization (especially with respect to L2 vertexing with many tracks) crucial

イロト イポト イヨト イヨ