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Overview 

• Off-axis beam dynamics 

– Combined function magnets 

– Off-axis beams through linear optics 

– Nonlinear extension 

• Optimisations strategies 

– Local vs. global optimisation 

– Examples for complex system 

 



Combined function magnets 
Normal dipole 

magnet 
Combined 

function dipole 

• Parallel faces of dipole yoke causes 
uniform magnetic field 
• Only dipole component 



Combined function magnets 

Combined 
function dipole 



Combined function magnets 
Normal dipole 

magnet 
Combined 

function dipole 

• Parallel faces of dipole yoke causes 
uniform magnetic field 
• Only dipole component 

• Non-parallel faces changes the 
magnetic field 
• Dipole component 
• AND quadrupole component 



Hill’s Equation 
 𝑥" = 𝐾𝑥 
 

 𝐾 =
1

𝜌2
 (Dipole) 

 𝐾 = 𝑘1 (Quadrupole) 

 𝐾 =
1

𝜌2
+ 𝑘1 (Combined function magnet) 

 
Transfer matrix: 

cos 𝐾𝑠
1

𝐾
sin 𝐾𝑠 0

− 𝐾 sin 𝐾𝑠 cos 𝐾𝑠 0

0 0 cosh 𝑘1𝑠

0 0
2

𝜌𝐾
sin2

𝐾𝑠

2

0 0
1

𝜌 𝐾
sin 𝐾𝑠

1

𝑘1
sinh 𝑘1𝑠 0 0

0 0 𝑘1 sinh 𝑘1𝑠

−
1

𝜌 𝐾
sin 𝐾𝑠 −

2

𝜌𝐾
sin2 𝐾𝑠 0

0 0 0

cosh 𝑘1𝑠 0 0

0 1 𝛼
0 0 1

 

  

 𝛼 =
1

𝜌2𝐾

1

𝐾
sin 𝐾𝑠 − 𝑠  



Simplified transfer matrix 

• Only consider horizontal plane 

– Vertical plane acts like a normal quadrupole 

– Ignore longitudinal dynamics for this lecture! 

𝑥1
𝑥′1

=
cos 𝐾𝑠

1

𝐾
sin 𝐾𝑠

− 𝐾 sin 𝐾𝑠 cos 𝐾𝑠

𝑥0
𝑥′0

 

 

𝐷𝑥,1
𝐷′𝑥,1
1

=

cos 𝐾𝑠
1

𝐾
sin 𝐾𝑠

2

𝜌𝐾
sin2 𝐾𝑠

𝐾 sin 𝐾𝑠 cos 𝐾𝑠
1

𝜌 𝐾
sin 𝐾𝑠

0 0 1

𝐷𝑥,0
𝐷′𝑥,0
1

 

The 3rd row of the matrix is useful for matrix calculations 



Off-axis beams through linear optics   

• A combined function magnet is NOT 
equivalent to travelling off-axis through a 
quadrupole! 



Trajectory through quadrupole 

Constant ρ (circular path) 
-> Constant dipole term 

𝜌 = 𝜌0 

𝜌 > 𝜌0 

𝜌 < 𝜌0 



Trajectory through quadrupole 
Beam trajectory through a quadrupole is well known solution from Hill’s equation: 
 

     
𝑥1
𝑥′1

=
cos 𝑘1𝑠

1

𝑘1
sin 𝑘1𝑠

− 𝑘1 sin 𝑘1𝑠 cos 𝑘1𝑠

𝑥0
𝑥′0

 (focusing quad) 

Or 
𝑥1
𝑥′1

=
cosh 𝑘1𝑠

1

𝑘1
sinh 𝑘1𝑠

𝑘1 sinh 𝑘1𝑠 cosh 𝑘1𝑠

𝑥0
𝑥′0

 (defocusing quad) 

 
But what about the dispersion? 
As 𝜌 varies, we cannot use the same equations as for a combined function 
magnet… 
For simplicity, we will define the dispersion function as: 

𝐷𝑥,1
𝐷′𝑥,1
1

=

𝑀11 𝑀12 𝐷𝑞
𝑀21 𝑀22 𝐷′𝑞
0 0 1

𝐷𝑥,0
𝐷′𝑥,0
1

 

Where 𝑀𝑖𝑗 are the quadrupole transfer matrix elements 

 𝐷𝑞 and 𝐷′𝑞 are the dispersive contributions of the quadrupole, which we shall 

determine… 



Off-axis dispersion 
Recall that dispersion can be defined as: 

𝐷𝑥 = 𝑀12 𝑙  
𝑀 11 𝑠

𝜌
𝑑𝑠

𝑙

0

−𝑀11 𝑙  
𝑀 12 𝑠

𝜌
𝑑𝑠

𝑙

0

 

𝐷′𝑥 = 𝑀22 𝑙  
𝑀 11 𝑠

𝜌
𝑑𝑠

𝑙

0

−𝑀21 𝑙  
𝑀 12 𝑠

𝜌
𝑑𝑠

𝑙

0

 

But we know that 𝜌 is not constant, so we need to find an expression for this… 
 

𝜌 𝑠 =
𝑑𝐿

𝑑𝜃
=

1 + 𝑥′2
3
2

𝑥"
 

But the Hill’s equation, 𝑥" = −𝑘1𝑥, can be used to simplify this equation: 

𝜌 𝑠 = −
1 + 𝑥′2

3
2

𝑘1𝑥
 

If 𝑘1 > 0 we obtain the solution for a focusing quadrupole 
If 𝑘1 < 0 we obtain the solution for a defocusing quadrupole 



Off-axis dispersion 
Since we know that: 

𝑥 𝑠 = 𝑀 11 𝑠 𝑥0 +𝑀 12 𝑠 𝑥′0 
𝑥′ 𝑠 = 𝑀 21 𝑠 𝑥0 +𝑀 22 𝑠 𝑥′0 

Then: 

𝐷𝑞 = 𝑘1 
𝑀12 𝑙 𝑀 11 𝑠 − 𝑀11 𝑙 𝑀 12 𝑠 𝑥

1 + 𝑥′2
3
2

𝑑𝑠
𝑙𝑞

0

 

= 𝑘1 
𝑀12 𝑙 𝑀 11 𝑠 − 𝑀11 𝑙 𝑀 12 𝑠 𝑥0𝑀 11 + 𝑥′0𝑀 12

1 + 𝑥0𝑀 21 + 𝑥′0𝑀 22
2

3
2

𝑑𝑠
𝑙𝑞

0

 

 

𝐷′𝑞 = 𝑘1 
𝑀22 𝑙 𝑀 11 𝑠 − 𝑀21 𝑙 𝑀 12 𝑠 𝑥

1 + 𝑥′2
3
2

𝑑𝑠
𝑙𝑞

0

 

= 𝑘1 
𝑀22 𝑙 𝑀 11 𝑠 − 𝑀21 𝑙 𝑀 12 𝑠 𝑥0𝑀 11 + 𝑥′0𝑀 12

1 + 𝑥0𝑀 21 + 𝑥′0𝑀 22
2

3
2

𝑑𝑠
𝑙𝑞

0

 

 
So we now have expressions for the dispersive contribution 



Example case: 
1-quad local orbit bump 

Dipole Dipole Focussing 

quad 

Dipole: 
cos 𝜃 𝜌 sin 𝜃 𝜌 1 − cos 𝜃

−
sin 𝜃

𝜌
cos 𝜃 sin 𝜃

0 0 1

 

Drift: 
1 𝐿 0
0 1 0
0 0 1

 



Close the orbit bump 
Determine x and x’ just after the 1st dipole: 

𝑥𝑑1
𝑥′𝑑1

=
𝜌 1 − cos 𝜃

tan 𝜃
 

 
 
Determine x and x’ just before the quadrupole: 

𝑥𝑞1
𝑥′𝑞1

=
1 𝐿
0 1

𝜌 1 − cos 𝜃
tan 𝜃

=
𝜌 − 𝜌 cos 𝜃 + 𝐿 tan 𝜃

tan 𝜃
 

 
Required x and x’ at the end of the quadrupole to close the orbit: 

𝑥𝑞2
𝑥′𝑞2

=
𝑀11𝑥𝑞1 +𝑀12𝑥𝑞1

′

𝑀21𝑥𝑞1 +𝑀22𝑥𝑞1
′ =

𝑥𝑞1
−𝑥𝑞1

′  

 
Solving these simultaneous equations, we get: 

𝑥𝑞1
𝑥𝑞1
′ =

𝑀12

1 − 𝑀11
= −

1 +𝑀21

𝑀22
 

Now we have closed the orbit bump, but we can use this to help with the dispersion 
integrals 



Dispersion through the cell 
To keep the maths easier, let’s just look at the dispersion through the quadrupole: 

𝐷𝑞2
𝐷𝑞2
′

1

=

𝑀11 𝑀12 𝐷𝑞
𝑀21 𝑀22 𝐷𝑞

′

0 0 1

𝐷𝑞1
𝐷𝑞1
′

1

 

 
If we first assume that the beam travels on-axis through the quadrupole (𝐷𝑞 = 𝐷𝑞

′ = 0) 

then if 
𝐷𝑞1

𝐷𝑞1
′ =

𝑥𝑞1

𝑥𝑞1
′  we know that this cell would be dispersion free at the ends… 

 
Dispersion after dipole: 

𝐷𝑥1
𝐷𝑥1
′ =

𝜌 1 − cos 𝜃
sin 𝜃

 

 
Dispersion at the start of the quad: 

𝐷𝑞1
𝐷𝑞1
′

1

=
1 𝐿 0
0 1 0
0 0 1

𝜌 1 − cos 𝜃
sin 𝜃
1

=
𝜌 1 − cos 𝜃 + 𝐿 sin 𝜃

sin 𝜃
1

 



Dispersion through the cell 
So: 

𝐷𝑞1
𝐷𝑞1
′ =

𝜌 1 − cos 𝜃

sin 𝜃
+ 𝐿 

𝑥𝑞1
𝑥𝑞1
′ =

𝜌 1 − cos 𝜃

sin 𝜃
cos 𝜃 + 𝐿 

 
If we assume that 𝜃 ≪ 1 (small angle approximation) then cos 𝜃 ≈ 1 and the ratios are 
equal. 
 
So in this case, the dispersion for an on-axis beam will be zero at the end of the cell. 
What about an off-axis beam? 
 
Assuming the small angle approximation, the transfer matrix for a dipole is: 

cos 𝜃 𝜌 sin 𝜃 𝜌 1 − cos 𝜃

−
sin 𝜃

𝜌
cos 𝜃 sin 𝜃

0 0 1

≈

1 𝜌𝜃
𝜌𝜃2

2

−
𝜃

𝜌
1 𝜃

0 0 1

 



Dispersion through the cell 
Since we know that all terms that don’t depend on 𝐷𝑞 and 𝐷𝑞

′  cancel through the cell, 

we can simply consider the propagation of 𝐷𝑞 and 𝐷𝑞
′  through the second part of the 

cell. 
After the 2nd drift: 

𝐷𝑥2
𝐷𝑥2
′

1

=
1 𝐿 0
0 1 0
0 0 1

𝐷𝑞 +⋯

𝐷𝑞
′ +⋯

1

=

𝐷𝑞 + 𝐿𝐷𝑞
′ +⋯

𝐷𝑞
′ +⋯

1

 

 
At the end of the cell: 

1 𝜌𝜃
𝜌𝜃2

2

−
𝜃

𝜌
1 𝜃

0 0 1

𝐷𝑞 + 𝐿𝐷𝑞
′ +⋯

𝐷𝑞
′ +⋯

1

=

𝐷𝑞 + 𝐿 + 𝜌𝜃 𝐷𝑞
′

−
𝜃

𝜌
𝐷𝑞 + 1 −

𝜃𝐿

𝜌
𝐷𝑞
′

1

 



Dispersion through the cell 
This is often known as RESIDUAL DISPERSION 
In low emittance machines, this can be a limitation on performance: 
• Difficult to locate sources of residual dispersion, so difficult to correct it 

• Beam based alignment, such as DISPERSION FREE STEERING, will reduce this 
• Depends on beam position jitter, so often varies pulse to pulse 

• Can also depend on charge jitter if wakefields are a problem. 
 

It is beyond the scope of this lecture, but it can be shown that it is not possible to have zero 
residual dispersion through any optical system when the beam travels off-axis.  



Nonlinear extension 
Consider a beam travelling through a higher order multipole, like a sextupole: 
 
On-axis: 

 𝐵𝑦 =
𝑝

𝑐
𝑘𝑛𝑥

𝑛 

 

For example, sextupole field: 𝐵𝑦 =
𝑝

𝑐
𝑘2𝑥

2 

 
If the beam travels off-axis by a distance 𝛿𝑥, then the field becomes: 

 𝐵𝑦 =
𝑝

𝑐
𝑘𝑛 𝑥 + 𝛿𝑥 𝑛 =  

𝑝

𝑐
𝑘𝑛

𝑛!

𝑘! 𝑛−𝑘 !
𝑥𝑛−𝑘𝛿𝑥𝑘 

 

For sextupole: 𝐵𝑦 =
𝑝

𝑐
𝑘2𝑥

2 + 2
𝑝

𝑐
𝑘2𝑥𝛿𝑥 +

𝑝

𝑐
𝑘2𝛿𝑥

2 

 
 
 
 
 
 
Travelling off-axis through a multipole introduces lower order terms 

Sextupole term 

Quadrupole term Dipole term 



Nonlinear extension 
We will only consider the dipole and quadrupole terms: 

𝐵𝑦 =
𝑝

𝑐
𝑘𝑛𝛿𝑥

𝑛 + 𝑛
𝑝

𝑐
𝑘𝑛𝛿𝑥

𝑛−1𝑥 + 𝑜(𝑥2) 

 

𝐾𝑥 = 𝑛𝑘𝑛𝛿𝑥
𝑛−1

𝛿𝑥

𝑛
+ 𝑛𝑘𝑛𝛿𝑥

𝑛−1 𝑥 

 
So the Hill’s equation is: 

𝑥" + 𝑛𝑘𝑛𝛿𝑥
𝑛−1 𝑥, 𝑥′, 𝑠

𝛿𝑥 𝑥, 𝑥′, 𝑠

𝑛𝑥
+ 𝑛𝑘𝑛𝛿𝑥

𝑛−1 𝑥, 𝑥′, 𝑠 𝑥 = 0 

 
But for 𝑛 > 1 (i.e. sextupole or higher), this is nonlinear and cannot be solved 
analytically. If we consider splitting the multipole into a large number of thin slices, 
then 𝛿𝑥 can be considered constant and each slice can be treated as a quadrupole and 
dipole term. 



Nonlinear extension 
If we consider the Hill’s equation for an off-axis quadrupole: 

𝐾𝑥 = 𝑘1𝛿𝑥 + 𝑘1𝑥 
 
Comparing this to the Hill’s equation for an off-axis multipole: 

𝐾𝑥 = 𝑛𝑘𝑛𝛿𝑥
𝑛−1

𝛿𝑥

𝑛
+ 𝑛𝑘𝑛𝛿𝑥

𝑛−1 𝑥 

 
Then we can compare terms: 

𝑘 1 = 𝑛𝑘𝑛𝛿𝑥
𝑛−1 

 
And the off-axis multipole term becomes: 

𝐾𝑥 = 𝑘 1
𝛿𝑥

𝑛
+ 𝑘 1𝑥 

 
Therefore travelling off-axis through a multipole a distance 𝛿𝑥 is equivalent to travelling 

off-axis through a quadrupole by a distance 
𝛿𝑥

𝑛
. 

• This means that the residual dispersion can be reduced, but still not removed. 
• The strong dependence of magnetic field to radial position means that the sensitivity 

to beam jitter increases by a factor 𝑛; so nonlinear optics can cause more problems. 



Optimisation strategies 
Consider a short beamline consisting of 3 sections: 
1) A quadrupole matching section 
2) An achromatic arc section 
3) Another quadrupole matching section 



Local optimisation 
Local optimisation: 
• Match initial beam parameters into arc cell 
• Match optics and dispersion in arc cell 
• Match arc cell beam parameters into final optics 

 
Advantages: 
• Easy to implement in simulations such as MADX, PLACET, ELEGANT… 
• Modular: can modify each section independently 
• Good for linear transverse optics 

• Matching Twiss parameters 
• Dispersion 

 
Disadvantages 
• Not good for complex problems: 

• Chromatic corrections 
• Nonlinear optics 
• Longitudinal optics 



Global optimisation 
MATCH EVERYTHING TOGETHER! 
 
Advantage 
• Very good at optimising complex problems 
 
Disadvantages 
• More difficult to implement 
• Large number of parameters to optimise: optimal solution can be difficult to find 

• Often good to use local optimisation before global optimisation. 
 
 



Example: CLIC drive beam TAL 



Locally optimised solution 

Emittance growth: 
Horizontal: 138 µmRad 
Vertical:  2.2 µmRad 
Longitudinal 1.8 µmGeV 



Globally optimised solution 

Emittance growth: 
Horizontal: 3.0 µmRad 
Vertical:  2.0 µmRad 
Longitudinal -0.0012 µmGeV 



Dispersion energy dependence 



R56 energy dependence 


