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Overview

e Off-axis beam dynamics
— Combined function magnets
— Off-axis beams through linear optics
— Nonlinear extension

* Optimisations strategies
— Local vs. global optimisation
— Examples for complex system



Combined function magnets

Normal dipole Combined
magnet function dipole
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* Parallel faces of dipole yoke causes
uniform magnetic field
* Only dipole component
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Combined function magnets

Normal dipole Combined
magnet function dipole
* Parallel faces of dipole yoke causes * Non-parallel faces changes the
uniform magnetic field magnetic field
* Only dipole component * Dipole component

* AND quadrupole component



Hill’s Equation

K p
K = k4 (Quadrupole)
K = i + k, (Combined function magnet)
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Simplified transfer matrix

* Only consider horizontal plane
— Vertical plane acts like a normal quadrupole
— Ignore longitudinal dynamics for this lecture!
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The 3™ row of the matrix is useful for matrix calculations




Off-axis beams through linear optics

A combined function magnet is NOT
equivalent to travelling off-axis through a
guadrupole!



Trajectory through quadrupole
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Constant p (circular path)
-> Constant dipole term

P = Po




Trajectory through quadrupole

Beam trajectory through a quadrupole is well known solution from Hill’s equation:

(focusing quad)

1.
(x1) coS+/ k1S \/T_lsm\/k_ls (x,o)

1
X cosh ./ ks —sinh ks /x

Or ( ,1) = ks ( ,0) (defocusing quad)

Jkqsinh,/k;s  cosh./kys

But what about the dispersion?

As p varies, we cannot use the same equations as for a combined function
magnet...

For simplicity, we will define the dispersion function as:

Dx,l Mll M12 Dq Dx,O
D’x,l = | My; My, D,q D’x,O
1 0 0 1 1

Where M;; are the quadrupole transfer matrix elements
D, and D’q are the dispersive contributions of the quadrupole, which we shall
determine...



Off-axis dispersion

Recall that dispersion can be defined as:

D, —'ﬂﬁz([)j‘ 2P ——A{U(I)Jﬂ 12(5)

= My (D) j ) 45 — My j 12(5)

But we know that p is not constant, so we need to find an expre55|on for this

3
dL  (1+x'%)2

S — =
p(s) = e
But the Hill’s equation, x" = —k;x, can be used to simplify this equation:

3
(1+x'?)2

s) =—
p(s) kox
If k; > 0 we obtain the solution for a focusing quadrupole
If k; < 0 we obtain the solution for a defocusing quadrupole



Off-axis dispersion

Since we know that:
x(s) = %11(5)950 + 1\112(5)95’0
x'(s) = My (8)xg + My, (s)x'g

Then:
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So we now have expressions for the dispersive contribution



Example case:
1-quad local orbit bump

Focussing

Dipole
quad
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Dipole: Drift:
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Close the orbit bump

Determine x and x’ just after the 1t dipole:
(xdl) _ (p(l — cos 9))
X'q1) tan 6
Determine x and x’ just before the quadrupole:
(x’q1> _ (1 L) (p(l — €OS 9)) _ (p — pcosO + Ltan 9)
X g1 0 1 tan @ tan @

Required x and x’ at the end of the quadrupole to close the orbit:
My1xq1 + M12x£11> _ ( Xq1 )

(xqz)
! — /
X q2 My1xg1 + Mppxgq

!/

Solving these simultaneous equations, we get:

Xg1 _ My 14 My

xé]l 1—-My, M5,
Now we have closed the orbit bump, but we can use this to help with the dispersion
integrals




Dispersion through the cell

To keep the maths easier, let’s just look at the dispersion through the quadrupole:

Dg> My1 Mi; Dg\ [Dg1
g2 | =| Mz1 M, Dy g1
1 0 0 1 1

If we first assume that the beam travels on-axis through the quadrupole (D, = DC’, = 0)

D
then ifD—C,’1 = % we know that this cell would be dispersion free at the ends...
q1 q1

Dispersion after dipole:
(Dxl) _ (p(l — COS 9))
9’51 sin 6
Dispersion at the start of the quad:

Dg4 1 L 0\ /p(1—cos6) p(1 —cos@) + Lsin6
g1]={0 1 0 sin 6 = sin 0
1 0 0 1 1 1



Dispersion through the cell

So:
Dg1 p(1—cosB)

D4 B sin 6
xq1 _ p(1—cosb)

cosf + L

!/

g1 sin 6

X

If we assume that 8 < 1 (small angle approximation) then cos 8 = 1 and the ratios are
equal.

So in this case, the dispersion for an on-axis beam will be zero at the end of the cell.
What about an off-axis beam?

Assuming the small angle approximation, the transfer matrix for a dipole is:
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Dispersion through the cell

Since we know that all terms that don’t depend on D, and Dc’; cancel through the cell,
we can simply consider the propagation of D, and Dc’, through the second part of the

cell.
After the 2nd drift:

D, 1 L 0\ /[/Dgt- D, + LDg + -
AR (hs M Qe
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At the end of the cell:
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Dispersion through the cell

This is often known as RESIDUAL DISPERSION
In low emittance machines, this can be a limitation on performance:
* Difficult to locate sources of residual dispersion, so difficult to correct it
* Beam based alignment, such as DISPERSION FREE STEERING, will reduce this
* Depends on beam position jitter, so often varies pulse to pulse
* Can also depend on charge jitter if wakefields are a problem.

It is beyond the scope of this lecture, but it can be shown that it is not possible to have zero
residual dispersion through any optical system when the beam travels off-axis.



Nonlinear extension

Consider a beam travelling through a higher order multipole, like a sextupole:

On-axis:
_D n

For example, sextupole field: B, = %kzxz

If the beam travels off-axis by a distance dx, then the field becomes:

_D n_vyvP n! n—-k gk
B, —Ckn(x+6x) —chn—k!(n_k)!x x

For sextupole: B, = %kzxz + ngzxdx + §k26x2

N

Quadrupole term Dipole term
Sextupole term

Travelling off-axis through a multipole introduces lower order terms



Nonlinear extension

We will only consider the dipole and quadrupole terms:

B, = gkn(Sx" + ngkn(Sx"‘lx + 0(x?)

ox
Kx = (nk,,6x™ 1) - + (nk,,6x™ Hx

So the Hill’s equation is:

5 ) ,l
x" + ((nkndx"‘l(x,x’, S)) x(x,x,5) + (nanx"_l(x,x’, s))) x=0

nx

But forn > 1 (i.e. sextupole or higher), this is nonlinear and cannot be solved
analytically. If we consider splitting the multipole into a large number of thin slices,
then éx can be considered constant and each slice can be treated as a quadrupole and

dipole term.



Nonlinear extension

If we consider the Hill’s equation for an off-axis quadrupole:
Kx = ki{6x + ki1x

Comparing this to the Hill’s equation for an off-axis multipole:

Ox
Kx = (nkndx"_1)7 + (nk,,6x™ Hx

Then we can compare terms:
k, = nk,6x™1

And the off-axis multipole term becomes:

- O0x
Kx=k17+k1x

Therefore travelling off-axis through a multipole a distance dx is equivalent to travelling
. . o)
off-axis through a quadrupole by a distance %

* This means that the residual dispersion can be reduced, but still not removed.
* The strong dependence of magnetic field to radial position means that the sensitivity
to beam jitter increases by a factor n; so nonlinear optics can cause more problems.



Optimisation strategies

Consider a short beamline consisting of 3 sections:

1) A quadrupole matching section '
2) An achromatic arc section
3) Another quadrupole matching section

[=]




Local optimisation

Local optimisation:

* Match initial beam parameters into arc cell

* Match optics and dispersion in arc cell

* Match arc cell beam parameters into final optics

Advantages:
e Easy to implement in simulations such as MADX, PLACET, ELEGANT...
* Modular: can modify each section independently
* Good for linear transverse optics

* Matching Twiss parameters

* Dispersion

Disadvantages

* Not good for complex problems:
* Chromatic corrections
* Nonlinear optics
* Longitudinal optics



Global optimisation

MATCH EVERYTHING TOGETHER!

Advantage
* Very good at optimising complex problems

Disadvantages

e More difficult to implement

* Large number of parameters to optimise: optimal solution can be difficult to find
e Often good to use local optimisation before global optimisation.



Example: CLIC drive beam TAL
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Locally optimised solution

A t

AVAVALIR

AN

Emittance growth:

Horizontal: 138 umRad
Vertical: 2.2 umRad
Longitudinal 1.8 umGeV



Globally optimised solution

A =
SO
\

Emittance growth:

Horizontal: 3.0 umRad
Vertical: 2.0 umRad
Longitudinal -0.0012 pmGeV




Dispersion energy dependence
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R56 energy dependence
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