Introduction to MatLab™

Dr. Öznur METE
University of Manchester
The Cockcroft Institute of Accelerator Science and Technology Iletişim Bilgileri
oznur.mete@cockcroft.ac.uk oznur.mete@manchester.ac.uk
www.cern.ch/omete

- MatLab is a powerful graphical calculator.
- Its built-in functions and libraries can be used for complicated calculations on large data sets.
- The results is visualised in the form of graphs and plots.

Given:

$$
\begin{gathered}
\xi=0.1 \\
\omega_{n}=10 \\
\omega_{d}=\omega_{n} \sqrt{1-\xi^{2}} \\
x_{0}=10
\end{gathered}
$$

Plot the following function for $t=0$ to 5 s .

$$
x(t)=x_{0} e^{-\xi \omega_{n} t}\left(\frac{\xi}{\sqrt{\left(1-\xi^{2}\right)}} \sin \omega_{d} t+\cos \omega_{d} t\right)
$$

MathWorks

MATLAB family

- Math, statistics, optimisation
- Control systems design and analyses
- Signal processing and communications
- Image processing and computer vision
- Test and measurement
- Computational finance
- Computational biology
- Code generation and verification
- Database connectivity and reporting
http://www.mathworks.com/products/

SIMULINK family

- Event based modelling
- Physical modelling
- Control system design and analysis
- ...

POLYSPACE family

- Debug
- Prove
- Review
- ...

PART 1 - Fundamentals of MATLAB

Basic Calculations in MATLAB

- MATLAB as a calculator
- Creating variables
- Locating data in MATLAB
- Inspecting contents of variables

Creating arrays

- Creating vectors
- Creating matrices

Manipulating arrays

- Indexing into arrays
- The colon (:) operator

Computing with arrays

- Matrix operations
- Eigenvalue analysis
- Array operations

Visualising mathematical functions
Writing your function in MATLAB

PART 2 - Hands-on Practice Session

Projects

- Graphical User Interface: Building a calculator
- Under-dumped string-mass system
- Gaussian fit to a given data set (on command line and by using Fitting Toolbox)
- Quadrupole scan analysis for emittance measurement (online analysis HW after diagnostics lecture)

PART I FUNDAMENTALS of MATLAB

MATLAB as a calculator

$$
\begin{gathered}
\rho=\frac{1+\sqrt{(5-i)}}{2} \\
z=e^{\rho} \\
a=|3+4 i| \\
t=0.2 \\
x=\sin \left(3 t+\frac{\pi}{2}\right)
\end{gathered}
$$

File Edit Debug Desktop Window Help
rho $=$
$1.6236-0.1113 \mathrm{i}$
$\gg z=\exp ($ rho $)$
$z=$
$5.0397-0.5630 \mathrm{i}$
$\gg \mathrm{a}=\mathrm{abs}\left(3+4^{*} \mathrm{i}\right)$
$\mathrm{a}=$
5
$\gg t=0.2$
$\mathrm{t}=$
0.2000
$\gg x=\sin \left(3^{*} t+(p i / 2)\right)$
$x=$

Basic Calculations in MATLAB

Mathematical functions

MATLAB has many built-in functions.

- Information on MATLAB programming and the built-in functions can be found in the MATLAB documentation.

Mathematical functions

MATLAB ${ }^{\circ}$

Functions:

- By Category
- Alphabetical List

Handle Graphics:

- Object Properties

What's New

- MATLAB ${ }^{@}$ Release Notes

Summarizes new features, bug fixes, upgrade issues, etc. for MATLAB

- General Release Notes for R2008a

For all products, highlights new features, installation notes, bug fixes, and compatibility issues

Documentation Set

- Getting Started

User Guides

- Getting Help in MATLAB

Provides instructions for using the Help browser and other help methods

- Examples in Documentation

Lists major examples in the MATLAB documentation

Mathematical functions

File Edit View Go Favorites Desktop Windov
\square
Title: MATLAB \quad *

MATLAB ${ }^{\circ}$

Functions:

- By Category
- Alphabetical List

What's New

- MATLAB ${ }^{\text {® }}$ Release Notes

Summarizes new features, bug fixes, upgrade issues, etc. for MATLAB

- General Release Notes for R2008a

For all products, highlights new features, installation notes, bug fixes, and compatibility issues

Documentation Set

Getting Started
User Guides

- Getting Help in MATLAB

Provides instructions for using the Help browser and other help methods

- Examples in Documentation

Lists major examples in the MATLAB documentation

- Proarammina Tins

Mathematical functions

Data Containers

- MATLAB variables are data containers
- All variables are arrays
- Variables come in different sizes mxnxp ...
- Variables come in different types double, single, cell, ...

Nota Bene:

- In MATLAB, fundamental data type is matrix.
- Even scalar variables are treated as 1×1 arrays.
- The default numerical data type is double.

Creating Variables

	000 Command Window			
	File Edit Debug	Desktop	Window	Help
Assign Operator	>> theta $=$ pi/2			
	theta $=$			
lumi_CLIC $=5.9 \mathrm{e} 34$	1.5708			
	>> format long			
Variable Name Value	theta $=$			
	1.570796326794897			
	>> format short			
$\theta=\frac{\pi}{2}$	>> $\mathrm{y}=2+\mathrm{i}$ 'sin(theta)			
2	$y=$			
$y=2+i \sin (\theta)$	$2.0000+1.0000 i$			
	>>			

Creating Variables

Exercise 02 - Creating variables in MATLAB

\square A variable is a container for the data in MATLAB. True or false?

That's right!
\square True
\square False
In MATLAB, data can be placed in areas like containers, also referred to as variables.

Once created, the name of a variable is used as a tag, allowing access and manipulation of the data assigned to it.

Creating Variables

Exercise 02 - Creating variables in MATLAB

- Which of the following are legitimate ways
of assigning data to a variable?

That's right!
The right-hand-side of the equals sign can be a value, another variable or the result of a calculation.
Also, multiple assignments are not allowed in a single command.

Accessing Data in MATLAB

click on a variable within the workspace

Accessing Data in MATLAB

Creating Vectors

transpose to column vector

Command Window				
File Edit Debug	Deskto	p Window	Help	
98.000098 .1000	98.2000	98.3000		
Columns 985 through	¢ 988			
98.400098 .5000	98.6000	98.7000		
Columns 989 through	h 992			
98.800098 .9000	99.0000	99.1000		
Columns 993 through	h 996			
99.200099 .3000	99.4000	99.5000		
Columns 997 through	h 1000			
99.600099 .7000	99.8000	99.9000		
Column 1001				
100.0000				
>> t $=0: 0.1: 100 ;$				4
>>				\checkmark

Creating Matrices

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \\
& \gg A=1,2,3 ; 4,5,6 ; 7,8,9] \\
& \left.\gg A=\begin{array}{llllllll}
1 & 2 & 3 ; & 4 & 5 & 6 ; & 7 & 8
\end{array}\right] \\
& \left.>A=\begin{array}{rrr}
\left.\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right\}
\end{array}\right\} \begin{array}{c}
\text { data entry } \\
\text { mode }
\end{array} \\
& \text { Column separator - , or space } \\
& \text { Row separator - ; or enter }
\end{aligned}
$$

O Command Window						
File Edit	Debug	Desktop		Window	Help	
>> ones(3)						
ans =						
11						
11						
11	1					
>> zeros(3)						
ans =						
00	0					
00	0					
00	0					
>> rand(4)						
ans $=$						
0.8147	0.6324	0.9575	0.95			
0.9058	0.0975	0.9649	0.48			
0.1270	0.2785	0.1576	0.80			
0.9134	0.5469	0.9706	0.14			
>> V						

Creating Arrays

Exercise 03 - Creating arrays in MATLAB

Create the array below in MATLAB:

$$
x=\begin{array}{cccc}
{[2} & 4 & 6 & 8]
\end{array}
$$

- Complete the command to suppress the command line output when the vector t is created.

$$
\gg t=0: 0.1: 100
$$

Create this matrix:

$$
I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

000 Command Window						
File	Edit	Debug	Desktop	Window	Help	
>>						
>> I = $\left[\begin{array}{llllllllll}1 & 0 & 0 ; 0 & 1 & 0 ; & 0 & 1\end{array}\right]$						
$1=$						
1	0	0				
0	1	0				7
0	0	1				
>> eye(3)						
ans =						
1	0	0				
0	1	0				
	0	1				
>>						
>>						
>>						
>>						
>>						
>>						
>>						
>>1						

Manipulating Arrays

$$
\gg A=\left[\begin{array}{llllllll}
1 & 2 & 3 & ; & 5 & 6 ; 7 & 9
\end{array}\right]
$$

- Indexing

$$
\begin{aligned}
& \gg k=A(2,3) \\
& \gg \text { block1 }=A\left(2,\left[\begin{array}{ll}
1 & 2
\end{array}\right]\right)
\end{aligned}
$$

-Colon operator

$$
\begin{aligned}
& \text { >> block2 }=A(2,1: 2) \\
& \text { >> row2 }=A(2,:)
\end{aligned}
$$

-Concatenating matrices

$$
\gg B=[A ; A]
$$

- Transposing
> Atrans $=A^{\prime}$

Matrix Operations

- MATLAB considers operands as matrices. (regular matrix algebra is valid)
- However multiplication with a scalar is a special case.
- For multiplication of two matrices the inner dimensions must agree.
- During addition/subtraction both matrices must have the same dimensions.
- For addition/subtraction with a scalar, the scalar expansion is automatically performed.

System of Linear Equations

- We have a set of linear equations and we want to find out the variables of this system.

$$
\begin{gathered}
x_{1}+x_{2}-x_{3}=0 \\
2 x_{1}+x_{2}+x_{3}=1 \\
x_{1}-x_{3}=-1 \\
\underbrace{\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & 1 & 1 \\
1 & 0 & -1
\end{array}\right)}_{\mathbf{A}} \underbrace{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)}_{\mathbf{x}}=\underbrace{\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)}_{\mathbf{b}} \\
A x=b
\end{gathered}
$$

System of Linear Equations

- How we calculate this by using MATLAB?

$$
\begin{aligned}
x_{1}+x_{2}-x_{3}=0 \\
2 x_{1}+x_{2}+x_{3}=1 \\
x_{1}-x_{3}=-1
\end{aligned}\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & 1 & 1 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

Eigenvalue Analysis

- Eigenvalue decomposition is a type of matrix operation that can be carried out to determine the eigenvalues and the eigenvectors of a matrix.

$$
\left(\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right)
$$

Obtain the characteristic polynomial by
extending the characteristic equation.
$\operatorname{det}(A-\lambda I)=0$

\downarrow| Obtain the coefficients of the characteristic |
| :--- |
| polynomial by using "poly" function. |

$c_{n} \lambda^{n}+\ldots+c_{2} \lambda^{2}+c_{1} \lambda+c_{0}=0$

- The eigenvalues can be computed by obtaining the roots of the function.
- One can also use the "eig" function in MATLAB, which returns the eigenvalues and the eigenvectors of a matrix.

Eigenvalue Analysis

- Eigenvalue decomposition is a type of matrix operation that can be carried out to determine the eigenvalues and the eigenvectors of a matrix. $\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right)$

Obtain the characteristic polynomial by extending the characteristic equation.
$\operatorname{det}(A-\lambda I)=0$

$c_{n} \lambda^{n}+\ldots+c_{2} \lambda^{2}+c_{1} \lambda+c_{0}=0$

- The eigenvalues can be computed by obtaining the roots of the function.
- One can also use the "eig" function in MATLAB, which returns the eigenvalues and the eigenvectors of a matrix.

Basic Calculations in MATLAB

Array Operations

- Operands have to be in the same size and shape.
- The array operators operate element by element.

© 2010 The MathWorks, Inc.

Basic Calculations in MATLAB

Array Operations

- Operands have to be in the same size and shape.
- The array operators operate element by element.

© 2010 The MathWorks, Inc.

Basic Calculations in MATLAB

Array Operations

- Operands have to be in the same size and shape.
- The array operators operate element by element.

Exercise 04 - Match the expected outcome to the operators used.

© 2010 The MathWorks, Inc.

Basic Calculations in MATLAB

Visualising the Mathematical Functions

- Displacement of an under-damped spring-mass system.

Given:

$$
\begin{array}{cl}
\xi=0.1 & \text { damping coefficient } \\
\omega_{n}=10 & \text { simple harmonic oscillation frequency } \\
\omega_{d}=\omega_{n} \sqrt{1-\xi^{2}} & \text { damped oscillation frequency } \\
x_{0}=10 & \text { initial position }
\end{array}
$$

Plot the following function for $t=0$ to 5 s .

$$
x(t)=x_{0} e^{-\xi \omega_{n} t}\left(\frac{\xi}{\sqrt{\left(1-\xi^{2}\right)}} \sin \omega_{d} t+\cos \omega_{d} t\right)
$$

Basic Calculations in MATLAB

Visualising the Mathematical Functions

Basic Calculations in MATLAB

Visualising the Mathematical Functions

Basic Calculations in MATLAB

Writing your function in MATLAB

- We can write a function in order to perform specific jobs in MATLAB.
- It makes our life easier.
- One function - One Task!
-Let's repeat the previous exercise by using functions...

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Displacement of an under-damped spring-mass system.
%
% HPFBU 2011-MATLAB Tutorial
% Help/Questions --> O. Mete
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\square \text { function [x, t] = damped_oscillator(z)}
% Parameters
%z=0.1;
wn = 10;
x0 = 10;
wd = wn * sqrt(1-z^2);
% Time range
t= 0:0.01:5;
% Position function of the spring-mass system
x = x0* exp(-\mp@subsup{z}{}{*}w\mp@subsup{n}{}{*}t).*(z/sqrt(1-\mp@subsup{z}{}{\wedge}2)**
end
```

Instead writing the all commands and assignments by hand into the command line, we can gather them all inside a ".m" file.

- We can relate them with a function.
- Functions are called by their attributes.
Their outputs can be assigned to variables.

PART II HANDS-ON PRACTICE SESSION

PART 2 - Hands-on Practice Session

Projects

-Graphical User Interface: Building a calculator
-Under-dumped string-mass system
-Gaussian fit to a given data set (on command line and by using Fitting Toolbox)
Quadrupole scan analysis for emittance measurement

Graphical User Interface: Building a Calculator

- Let's create a GUI that does basic mathematical calculations, interactively. - Call the MATLAB GUI builder by typing "guide" in the command window, - or from MATLAB start menu as shown:

Hands-on Practice Session

Graphical User Interface: Building a Calculator

- Choose one of the templates of the GUI builder.
Save new figure as: /Users/OM/Documents/Conferences_Schools/HPFBU2011/MatLab_Lecture_Material/GUI_Calculator/untitled.fig

Graphical User Interface: Building a Calculator

■ Add 8 "Edit Text" objects on the GUI panel to form our input boxes.

Graphical User Interface: Building a Calculator

- Add 4 "static text" objects on the panel to indicate the mathematical operators. - You can edit each text box by using the "String" property from the "Inspector".

Graphical User Interface: Building a Calculator

- Add "equals" signs and 4 additional "static text" boxes to display the results of the calculations.

Graphical User Interface: Building a Calculator

Some make-up for your panel :)

Graphical User Interface: Building a Calculator

- The script for the GUI will be automatically generated when we save our project.

Graphical User Interface: Building a Calculator

- First, we will edit the "callback" functions of the objects.
- Repeat the same for all edit box callback functions that will be used for the data entry.

O ○ /Users/OM/Documents/Conferences_Schools/HPFBU2011/MatLab_Lecture_Material/GUI_Calculator/HPFBU2011_calculator.m*
File Edit Text Go Cell Tools Debug Desktop Window Help

function edit1 Callback(hObject, eventdata, handles)
$\square \%$ hObject handle to edit1 (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)
76
77
\% Hints: get(hObject,'String') returns contents of edit1 as text
\% str2double(get(hObject,'String')) returns contents of edit1 as a doubl
\% We will add our code here!
\% --- Executes during object creation, after setting all properties.
\square function edit1 CreateFcn(hObject, eventdata, handles)
$\%$ hObject handle to edit1 (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles empty - handles not created until after all CreateFcns called
\% Hint: edit controls usually have a white background on Windows.
\% See ISPC and COMPUTER.
if ispc \&\& isequal(get(hObject,'BackgroundColor'), get(0 ,'defaultUicontrolBa। set(hObject,'BackgroundColor','white');
end

\square function edit1 Callback(hObject, eventdata, handles)
\% eventdata reserved - to be defined in a future version of MATLAB
\% Hints: get(hObject,'String') returns contents of edit1 as text
\% str2double(get(hObject,'String')) returns contents of edit1 as a double
\% We will add our code here!
\%store the contents of edit1 as a string. if the string
input $=\operatorname{str} 2$ num (get(hObject 'String'));
\%checks to see if input is empty. if so, default input1_editText to zero (isempty(input))
set(hObject,'String','0')
guidata(hObject, handles);
\% --- Executes during object creation, after setting all properties.
\square function edit1 CreateFcn(hObject, eventdata, handles)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles empty - handles not created until after all CreateFens called

Graphical User Interface: Building a Calculator

- Edit the callback function for the "Calculate" "pushbutton" object.

Hands-on Practice Session

Graphical User Interface: Building a Calculator

- Call your GUI by using its name in the command window.
- And, try a few calculations!

PART 2 - Hands-on Practice Session

Projects

- Graphical User Interface: Building a calculator
- Under-dumped string-mass system
- Gaussian fit to a given data set (on command line and by using Fitting Toolbox)
- Quadrupole scan analysis for emittance measurement

Under-damped Spring-Mass System

Homework

- Write a program;
- that calls the function "damped_oscillator" recursively for different z values,
- and draws the x-t plots on the same figure.
- Therefore, one could monitor the behavior of the system for different z values.

PART 2 - Hands-on Practice Session

Projects

- Graphical User Interface: Building a calculator
- Under-dumped string-mass system
- Gaussian fit to a given data set (on command line and by using Fitting Toolbox)
- Quadrupole scan analysis for emittance measurement

Gaussian fit to a given data set by using MATLAB

- Load a data set into the MATLAB workspace.
- Visualise the data set to be fit.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Loading and Plotting a Data Set with MATLAB
%
% HPFBU 2011 - MATLAB Tutorial
%
% Help/Questions O.Mete
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

load('data_to_be_fit.mat');
figure(1)
plot(x_ax-x_ax(1),y_ax,'-ob');
xlabel('Beam Size (mm) ','fontsize',14);
ylabel('Intensity (a.u.)','fontsize',14);
legend('Intensity Distribution')
grid on;
xlim([0 40]);

Gaussian fit to a given data set by using MATLAB

- Load a data set into the MATLAB workspace.
- Visualise the data set to be fit.
- How is the "fit" built-in function used in MATLAB? Please search within the documentation.

- Determine the initial fit parameters for the fit.
- Find the background to be subtracted before the fit (in this case zeroth order polynomial).
- Fit the data to a Gaussian curve.
- Extract the fit parameters.
- Plot the data and the Gaussian fit curve on top of each other.
- Transform your fitting script into a MATLAB function. Use the x and y data as the function arguments. Function should return the mean and 1sigma of the distribution as well as the Chi^2 value.

Hands-on Practice Session

Gaussian fit to a given data set by using MATLAB

- Load a data set into the MATLAB workspace.
- Visualize the data set to be fit.
- How is the "fit" built-in function used in MATLAB? Please search within the documentation.

```
%%%%%% Gauss fit %%%%%%%%%%%%%%%%%%%%%
% Let's try to fit a polynomial background to the distribution.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ff_=polyfit( datx(1:50),daty(1:50),0);
% Subtract the background from the data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
daty = daty - ff_;
% Fit the noise-free data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[cf1_,gof1]=fit(datx(),daty(),'gauss1','Startpoint',[max(daty) mean0 sigma0],'MaxFunEvals',6000);
% Create the fit curve
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:10000
nc1_(i)=(cf1_.a1)*exp(-((i/100-cf1_.b1)/cf1_.c1).^2);
axn1_(i)=i/100;
end
% Retrive fit parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xsize = (cf1_.c1)/sqrt(2);
posx = cf1_.b1;
gofx = gof1.rsquare;
```


PART III EXTRAS

- How to make your plots visually more representable? :)
- How to increase computing speed in MATLAB?
- MATLAB toolboxes: plots, statistics, image processing, signal processing, neural network...
- Importing C++ codes
- Object-oriented programming
- GPU programming
- MATLAB - Simulink
- System optimisation

