Simulation of O2 offline processing - tools and models

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture

Eugen Mudnić

 \rightarrow

Simulation of O2 data processing

- Online & Offline simulation challenges
 - Scalability (network simulation model)
 - Omnet++
 - New simulation components
 - Our contribution

Simulation tool/model scalability

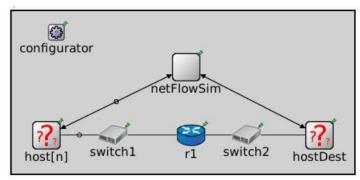
- O2 simulation <-> Omnet++
 - Already used for O2 simulation development -> tool of choice (?)
 - Simulation core is C++ based (good starting point)
 - Lots of features (modules) make it powerful but a steep learning curve
 - INET framework for simulating real-time network traffic
 - High temporal accuracy (TCP/Ethernet level) required for network design
 - TCP level simulation of large HPC data processing : time prohibitive if it includes a lot of data movement
 - Already done (Charles Delort /CERN) :
 - Network simulation (TCP level) = ~67-69h for 18-31s
 - Full system (high level) = 1867s for 2000s
 - Storage (high level) = 3 sec for 30 days
 - Looks more than scalable ?

Simulation tool/model scalability

- Looks scalable, but:
 - High level for Full system = TCP level with downscaling network throughput/data volume
 - Incorrect protocol dynamic ? Validated ?
 - High level for storage = one stream at a time for one network link
 - File transfer as delayed message (bandwidth/size)
 - Applicable only for some data paths / data processing scenarios
 - No suitable Omnet++ module for flow level (=fast) network simulation

10Gbps

100MB


1Gbps

10MB

- Network topology based on message channels no easy way to incorporate coarse network simulation
- Going to simulation of O2 Offline data processing:
 - Longer simulation time periods (days, week,...)
 - Few orders of magnitude larger data movement
 - High level/coarse network model required

Flow level model

- Maps network as:
 - bandwidth sharing links, discrete data flow changes
 - includes more or less of protocol dynamics
- Like SimGrid well tested flow level model (+packet level)
- Omnet++ <- incorporate flow based model ?
 - model adjusted to O2 architecture
 - fast and sufficiently accurate
 - used as alternative network model
 - tuned using TCP level simulations

S/S

S/S

S/S

Network link

Node

 using common network description or automatically constructed from standard Omnet++ TCP level topology

O2 Online->Offline simulation elements/models

- File catalog(s) / accounting / persistence
 - MySQL (integrate into Omnet++)
 - Other solutions ?
 - Scalability test (use of embedded version)
 - other modules are dependable -> early decision what to use
- Processing node
 - Common network & storage(?) modules with Online
 - "Offline application" sub module (job execution environment):
 - Top-down approach modelling based on measurements of job execution statistics
 - Include effects of:
 - multicore CPU or GPU data processing
 - common local storage/memory

O2 online ->offline simulation elements/models

- Data storage models
 - More detailed model for buffer storages
 - Is it scalable for longer time period simulations (offline) ?
 - Use top-town approach based on measurements for typical data read/write scenarios
- Other "Offline" elements:
 - Batch system/resource broker, agent/pull model, ...
 - Well defined behaviour (easy to model)

Our contribution & further steps- proposal

- Our contribution:
 - Incorporate into Omnet++ flow based network model
 - Create simulation modules for Offline data processing
 - File catalog/accounting/persistence,
 - Top-down modelled processing/storage modules,
 - Batch system/resource broker, agent/pull modules
- Further steps:
 - Define what FESB team should contribute
 - Become familiar with Charles existing code and define or accept already defined collaborative development standards
 - Define simulation development priorities
 - Contribute ! At CERN , out of CERN ,...