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Absrtact. A linear generalized central spline algorithm for computerized
tomography problem is constructed and studied.

The main problem of computerized tomography is contained in the reconstruction
of function by its integral over hyperplanes. This mathematical problem is
encountered in a growing number of diverse settings in medicine, science,
technology, and, in general, in the cases, when the inner structure of an object
is investigated with the help of some emanations. An important well-known
example of computerized tomography is its application in the roentgendiagnostic.
The scheme of this process is the following.

Consider a roentgenbeams following a line L that passes through an
object. Let f(t) be the absorption coe�cient by biocloth of the rentgen beams
in a point t and I(t) be the intensity of the beam at t. If the initial intensity
of the beam L is I0 and its intensity after the passage of the body is I1,
then I1/I0 = exp{−

∫
L
f(t)dt}. This means that after the scanning we get

the linear integrals along to such line L. The problem is in the reconstruction
of f with the help of such set of integrals. If we investigate a space body,
then line integrals will be replace by integrals along hyperplanes. The map
R, which corresponds to a de�ned on Rn function f the integrals of f along
all hyperplanes, is called the Radon transform.

Generally for the de�nition of Radon transform R in the n-dimensional
Euclidean space Rn, the standard parametrization of a hyperplane by a
normal unit vector ω and its distance s from the origin are used. The Radon
transform R maps a density function u to its integrals over all hyperplanes
and is de�ned by the formula

Ru(ω, s) =

∫
(t,ω)=s

u(t)dt =

∫
ω⊥
u(sω + t)dt, (1)

where ω ∈ Sn−1 = {x ∈ Rn : |x| = 1}. R is well de�ned wenn u belongs
to the Schwartz space S(Rn) of fast decreasing in Rn functions. R is one-to-
one operator acting from S(R)n in the Schwartz space S(Z), where Z is the
cylinder Z = Sn−1 × R.
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The Radon transform, which is de�ned by (1) only for the belonging to
the Schwartz space S(Rn) functions, admits a continuous extension in some
weighted L2-spaces. Let Wν(x) = (1− |x|2)ν−n/2 be weight function, de�ned
on the unit ball Ωn = {x ∈ Rn : |x| ≤ 1} and let wν(s) = (1− s2)ν−1/2, s ∈
[−1, 1] be weight function, de�ned on the cylinder Z. It is shown that R is
continuous operator, acting from the space Hν = L2(Ωn,W−1

ν ) in the space
Kν = L2(Z,w−1

ν ), which are endowed with the usually norms and ν > n/2−1,
the acting in this spaces operator R admits a singular decomposition, which
is obtained by A.Louis.

The Radon transform is studied in many papers. Constructions of the
inverse Radon transform are obtained by J.Radon, A. Louis, F. Netterer and
others. Beginning from the 60-th of the past century, there exists the problem
of construction of algorithms for the approximate solution of the equation

Ru = f, (2)

where the Radon transform R, generally speaking, acts from the Fréchet
space in a such type space. Some constructions of approximate Radon inverse
transform are given by R. Dietz, P. Maas and others. To this problem is
devoted our reports too. If R acts from Hν in Kν , the equation (2) is ill-posed
and with a view to its transformation in a well posed one, in some sense, we
follow the approach of Thichonow. We have founded a set of functions f for
which the equation (2) is getting well-posed. For the further consideration of
our problem we reduce some de�nitions.

Let E be a linear space over the scalar �eld of real or complex numbers.
Let F be an absolute convex set in E. Let us consider a linear operator
S : E → G, called a solution operator, where G is a linear metric space
over the scalar �eld of real or complex numbers with a metric d. Elements f
from F are called problem elements for solution operator and S(f) are called
solution elements. For f we wish to compute S(f). Let U(f) be the computed
approximation. The distance d(S(f), U(f)) between S(f) and U(f) is called
the absolute error.

For the construction of a computed approximation U(f) we gather enough
an information about a problem element f . Let y = I(f) be a nonadaptive
computed information of cardinality m, i.e.

I(f) = [L1(f), · · · , Lm(f)] , (3)

where L1, · · · , Lm are linear functionals on the space E. Knowing y = I(f),
the approximation U(f) is computed by combining the information to produce
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an element of G, which approximates S(f). That is U(f) = ϕ(I(f)), where
ϕ : I(E)→ G is a mapping, which is called an algorithm.

The worst case error of U is de�ned by

e(ϕ, I) = sup{d(S(f), U(f)), f ∈ F}.

Naturally, we are interested in algorithm with minimal error. An algorithm
ϕ∗ is called an optimal error algorithm if it realized inf in last equality, i.e.
e(ϕ∗, I) = inf{e(ϕ, I) : ϕ ∈ Φ}, where Φ is the set of all algorithms.

In the classical theory of algorithms, besides to optimal algorithms, there
are considered the so-called spline and central algorithms. A central algorithm
possesses even more strong property than optimal one. Every central algorithm
is optimal, but obviously not every optimal error algorithm algorithm is
central. Central algorithms ensure the best possible approximation to S(f)
for every f from the domain of de�nition of S. Especially important are
algorithms which are linear, spline and central simultaneously. It happens
that, under the consideration of some problem, a spline does not exists. Then
does not exists the corresponding spline algorithm too. For the investigation
of these cases we have introduced notions of generalized spline and generalized
central algorithms. The substance of these generalization is in following.
These new notions are de�ned with the help not one set F ⊂ E, but with
a decreasing sequence of absolutely convex absorbed sets {Vn}, n ∈ N ,
belonging to E. We have not have a possibility for the formulation of these
notions because of the time de�ciency.

In what follows, an operator S is said to be the solution operator of an
operator equation Au = f , if u = Sf . We call the central (resp. linear, spline,
optimal) algorithm, approximating the solution operator S, as central (resp.
linear, spline, optimal) algorithm for the equation Au = f .

LetH andM are Hilbert spaces and {ϕk}, {ψk} are orthogonal systems in
H andM respectively. For the sake of simplicity we apply the same notations
(·, ·) for the inner products in H and M . Let further A be an operator acting
from H in M and having a singular decomposition

Au =
m∑
k=1

σk(u, ϕk)ψk , u ∈ H, σk > 0 (4).

If the operatorA has such decomposition, we say also that the triple {ψk, ϕk, σk},
k = 1, 2, · · · represents a singular system for A. The number σk are called
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singular numbers of the operatorA. In general, such operators are not compact
and selfadjoint and ImA 6= M . The problem of solution of equation

Au = f, (5)

in general, is ill posed. For the realization of Thichonov's idea we �nd in H a
set on which the problem is well posed. Namely, we consider the set D(A−∞)
in H consisting from such f ∈ H on which may be realized the operator
A−n ≡ A−1(An−1f) for all n ∈ N. On D(A−∞) we consider the following
sequence of Hilbertian seminorms

‖x‖n = (‖x‖2 + ‖A−1x‖2 + · · ·+ ‖A−n+1x‖2)1/2, n ∈ N.

We seek the generalized solution of (5) in the sense of Mourie-Penrose. This
means that if f ∈ ImA + (ImA)⊥, as a generalized solution is considered an
element A+f which minimized the norm ‖Au − f‖. If there exist a set of
such elements, we take between them an element with the minimal norm.
This generalized solution satis�es the equation

A∗Au = A∗f (6).

It may be proved that if A possesses a decomposition (4), then the unique
solution u+ of (6), in the sense of Mourie-Penrose, is given by the formula

u+ = Σ∞k=1(σk(ψk, ψk)(ϕk, ϕk))
−1(f, ψk)ϕk.

The operator A∗A is symmetric and positive. Let us assume yet that A is
one-to-one on whole H operator. The operator A∗A is selfadjoint, having
dence image and positive eigenvalues σ2

k(ψk, ψk), which correspond to the
functions ϕk.

We have solved the equation (6) by Rietz extended method and proved
that the obtained algorithm

um = Σm
k=1(σk(ψk, ψk)(ϕk, ϕk))

−1(f, ψk)ϕk. (7)

is a linear, spline and central for the information I(f) = [(f, ψ1), · · · , (f, ψm)].
Moreover, if the condition limk→∞ σk(ϕk, ϕk)(ψkψk) = 0 holds, then the
approximate solution um converges to the solution of the equation (6) so
that (A∗A)−num converges to (A∗A)−nu, m→∞, for every n ∈ N in H.

Now we may apply the obtained results to our main problem of the
construction of approximate inverse for the Radon transform, i.e. of the
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approximate solution of the equation (2). For this we apply a singular decomposition
with respect to products of Gegenbauer polynomials and spherical harmonics
for the Radon transform, which acts from the above mentioned weight space
Hν = L2(Ωn,W−1

ν ) in the weight space Kν = L2(Z,w−1
ν ) and which is

obtained by A. Louis. The two-dimensional case was considered earlier by
A. Cormack. We use the form of this decomposition, which is given in the
work of R.Dietz.

We introduce some notations:
P

(α,β)
m is the Jacobi polynomial of degree m and indices α, β; Cν

m is the
Gegenbauer polynomial of degree m and index ν; Γ is the second kind Euler
integral.
{Ylk, k = 1, · · · , N(n, l)} is orthonormal basis of spherical functions,

de�ned on Sn−1, where l = 0, 1, · · · , and N(n, l) = (2l+n−2)(n+l−3)!
l!(n−2)!

, n ≥ 2;

vνmlk(x) = Wν(x)|x|lP (ν−n/2,l+n/2−1)
(m−l)/2 (2|x|2 − 1)Ylk(x/|x|); (8)

uνmlk(ω, s) = dmlwν(s)C
ν
m(s)Ylk(ω), where

dml = πn/2−122ν−1 Γ((m− l)/2 + ν − n/2 + 1)Γ(m+ 1)Γ(ν)

Γ((m− l)/2 + 1)Γ(m+ 2ν)
; (9)

σ2
mlk =

22νΓ((m+ l)/2 + ν)Γ((m− l)/2 + ν − n/2 + 1)Γ(m+ 1)

π1−nΓ((m+ l + n)/2)Γ((m− l)/2 + 1)Γ(m+ 2ν)
= σ2

ml; (10)

We note that in the notations (8)-(10), P
(α,β)
0 ≡ 1, Cλ

0 ≡ 1 and Y0k ≡ 1.
Now we formulate our main result:
Theorem. Let {vνrlk, uνrlk, σrl}, l ≤ r, 1 ≤ k ≤ N(n, l) is a singular

system for the Radon transform R, which acts from Hν = L2(Ωn,W−1
ν ), ν >

n/2− 1, in the space Kν = L2(Z,w−1
ν ). Then the algorithm

ϕ(m)(I(f))(x) =
m∑
r=0

∑
l≤r

′
σrl

N(n,l)∑
k=1

(f, uνrlk)L2(Z,w−1
ν )v

ν
rlk(x), x ∈ Hν , (11)

where Σ′ means that the summability takes place only for even m + l, is the
linear generalized spline and the generalized central for the solution operator
S = (R∗R)−1 and nonadaptive information I(f) = [(f, uν001), · · · , (f, uνmmN(n,m))].
Moreover, these approximative solutions converges to the solution of equation
(2) (in the sense of Moorie-Penrose) so that (R∗R)−nϕ(m) converges to (R∗R)−nu,
m→∞, for every n ∈ N in Kν, where u is solution of Radon equation (2).
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Finally, we make one comment relative the formula (11). As it was mentioned
above, with the help of tomograph we may calculate integrals of f along
hyperplanes. Our formula contains not these integrals, but inner products
of f and functions uνrlk. It may be proved that with the help of integrals
over hyperplanes we may calculate these inner product. This follows from
the following formula

(f, uνrlk)L2(Z,w−1
ν ) =

∫ 1

−1

wν(s)ds

∫
Sn−1

uνrlk(s, w)dw

∫
ω⊥Ωn

f(sω + y)dy.

It enters in our plane to make the programm for the algorithm (11) that is
not so easy.
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