Application of Compact Vector Summation to Reroute Sequence Planning in Telecommunication Networks

Sergei Chobanyan

Georgian Technical University N. Muskhelishvili Institute of Computational Mathematics Tbilisi, Georgia

e-mail: chobanyan@stt.msu.edu

Abstract

Our method of Compact Vector Summation(CVS) has been used in [1] to solve the Reroute Sequence Planning problem (RSP-problem) in telecommunication network. Here we give a short account of such application.

A network consists of the set V of vertices and the set E of edges connecting certain pairs from V (not necessary all pairs), |E| = m (the number of edges equals m). Consider a system of paths $P = (P_1, ..., P_k)$, the path P_i connecting the vertices s_i and t_i , i = 1,...,k. By a path connecting s_i and t_i , we mean a broken line consisting of edges with the starting point at s_i and endpoint at t_i . (It is worthy to remark that the problem can be stated formally, entirely in terms of abstract graph theory.)

Fig.1.

Fig. 1 shows an example of a network consisting of 8 vertices and 8 edges. Consider a system $P = (P_1, P_2)$, where the path P_1 consists of edges e_1 , e_2 , e_6 , e_7 , while P_2 consists of edges e_2 , e_4 , e_8 . For a general network each of the paths (say P_j) of the system $P = (P_1, ..., P_k)$ imposes a demand d_j , on the capacity for each of the edges of the path P_j . If an edge e belongs to several paths, then the total demand u(e) imposed on this edge is the sum of corresponding demands. For example, in Fig. 1 the total capacity demand on the edge e_4 (which is common for P_1 and P_2) is $d_1 + d_2$. The demand on the edges e_1 , e_6 , e_7 is d_1 , while the demand on e_2 , e_8 is d_2 . In order the network to function, the total demand u(e) is common for P_1 .

In reroute sequence planning (RSP) the system $P = (P_1, ..., P_k)$ of paths should be replaced by the system $Q = (Q_1, ..., Q_k)$ connecting the same vertices s_i and t_i , i = 1, ..., k imposing the same demands $d_1, ..., d_k$. In a reroute sequence procedure at each step only one of P's is being replaced by the corresponding path of Q's. RSP consists in finding a sequence $n_1, ..., n_k$ such that after each of successive replacements P_{n_1} by $Q_{n_1}, ..., P_{n_k}$ by Q_{n_k} , the total demand u(e) does not exceed the capacity c(e) for each $e \in E$. Denote by $x_i(e)$ the change in demand for the edge $e \in E$ when P_i is replaced by Q_i (i.e. the total demand after the replacement minus the total demand before the replacement). We have:

$$\begin{aligned} &d_i \text{ if } e \notin P_i, \ e \in Q_i \\ &x_i(e) = -d_i, \text{ if } e \in P_i, e \notin Q_i \\ &0 \text{ otherwise }. \end{aligned}$$

The vectors $x_1, ..., x_k$ belong to the space \mathbb{R}^n , where *n*, the dimension of the space, is the number of edges. Denote by $L_0(e)$ the starting total demand on the edge $e \in E$ and assume we have chosen a sequence $n_1, ..., n_k$ of replacements P_{n_1} by Q_{n_1} , ..., P_{n_k} by Q_{n_k} . Then the demand on the edge $e \in E$, after the *l*-th step is

$$L_0(e) + x_{n_1}(e) + \dots + x_{n_l}(e).$$

This implies that the demand on the edge e at each step does not exceed

$$L_{0}(e) + \max_{1 \le l \le k} \max_{e \in E} |x_{n_{1}}(e) + \dots + x_{n_{l}}(e)| = L_{0}(e) + \max_{1 \le l \le k} ||x_{n_{1}}(e) + \dots + x_{n_{l}}(e)||_{\infty},$$

where $\|\cdot\|_{\infty}$ denotes the maximum norm. Thus we have come to the problem of finding a permutation $\sigma: \{1, ..., k\} \rightarrow \{1, ..., k\}$ minimizing $r(\pi) = \max_{1 \le l \le k} \|x_{n_1}(e) + ... + x_{n_l}(e)\|,$

where the permutation π is defined by the sequence $n_1, ..., n_k$.

REFERENCES

[1] M. Makai, "Reroute sequence planning in telecommunication networks and compact vector summation." *Appl. Math. Comp.*, 150, pp. 785-801, 2004.

[2] S.A. Chobanyan, "Convergence a.s. of rearranged random series in Banach space and associated inequalities." Probability in Banach Spaces 9, pp. 3-29, Boston, Birkhauser, 1994.

[3] L.A. Chobanyan, S.A. Chobanyan, G. Giorgobiani, "A maximum inequality for rearrangements of summands and its applications to orthogonal series and scheduling theory." *Bulletin Georgian National Academy of Sciences*, 5, 16-21, 2011.