Application of Compact Vector Summation to Reroute Sequence Planning in Telecommunication Networks

Sergei Chobanyan
Georgian Technical University
N. Muskhelishvili Institute of Computational Mathematics
Tbilisi, Georgia
e-mail: chobanyan@stt.msu.edu

Abstract

Our method of Compact Vector Summation(CVS) has been used in [1] to solve the Reroute Sequence Planning problem (RSP-problem) in telecommunication network. Here we give a short account of such application.

A network consists of the set V of vertices and the set $\quad E$ of edges connecting certain pairs from V (not necessary all pairs), $|E|=m$ (the number of edges equals m). Consider a system of paths $P=\left(P_{1}, \ldots, P_{k}\right)$, the path P_{i} connecting the vertices s_{i} and $t_{i}, i=1, \ldots, k$. By a path connecting s_{i} and t_{i}, we mean a broken line consisting of edges with the starting point at s_{i} and endpoint at t_{i}. (It is worthy to remark that the problem can be stated formally, entirely in terms of abstract graph theory.)

S_{1}

\mathbf{e}_{3}

Fig.1.
Fig. 1 shows an example of a network consisting of 8 vertices and 8 edges. Consider a system $P=\left(P_{1}, P_{2}\right)$, where the path P_{1} consists of edges $e_{1}, e_{2}, e_{6}, e_{7}$, while P_{2} consists of edges e_{2}, e_{4}, e_{8}. For a general network each of the paths (say P_{j}) of the system $P=\left(P_{1}, \ldots, P_{k}\right)$ imposes a demand d_{j}, on the capacity for each of the edges of the path P_{j}. If an edge $e \quad$ belongs to several paths, then the total demand $u(e)$ imposed on this edge is the sum of corresponding demands. For example, in Fig. 1 the total capacity demand on the edge e_{4} (which is common for P_{1} and P_{2}) is $d_{1}+d_{2}$. The demand on the edges e_{1}, e_{6}, e_{7} is d_{1}, while the demand on e_{2}, e_{8} is d_{2}. In order the network to function, the total demand $u(e)$ for each of the edges e should not exceed the given capacity $c(e)$.

In reroute sequence planning (RSP) the system $P=\left(P_{1}, \ldots, P_{k}\right)$ of paths should be replaced by the system $Q=\left(Q_{1}, \ldots, Q_{k}\right)$ connecting the same vertices s_{i} and $t_{i}, i=1, \ldots, k$ imposing the same demands $\quad d_{1}, \ldots, d_{k}$. In a reroute sequence procedure at each step only one of $P^{\prime} s$ is being replaced by the corresponding path of $Q^{\prime} s$. RSP consists in finding a sequence n_{1}, \ldots, n_{k} such that after each of successive replacements $P_{n_{1}}$ by $Q_{n_{1}}, \ldots, P_{n_{k}}$ by $Q_{n_{k}}$, the total demand $u(e)$ does not exceed the capacity $c(e)$ for each $e \in E$. Denote by $x_{i}(e)$ the change in demand for the edge $e \in E$ when P_{i} is replaced by Q_{i} (i.e. the total demand after the replacement minus the total demand before the replacement). We have:

$$
\begin{gathered}
d_{i} \text { if } e \notin P_{i}, e \in Q_{i} \\
x_{i}(e)=-d_{i}, \text { if } e \in P_{i}, e \notin Q_{i} \\
0 \text { otherwise } .
\end{gathered}
$$

The vectors x_{1}, \ldots, x_{k} belong to the space \mathbf{R}^{n}, where n, the dimension of the space, is the number of edges. Denote by $L_{0}(e)$ the starting total demand on the edge $e \in E$ and assume we have chosen a sequence n_{1}, \ldots, n_{k} of replacements $P_{n_{1}}$ by $Q_{n_{1}}, \ldots, P_{n_{k}}$ by $Q_{n_{k}}$. Then the demand on the edge $e \in E$, after the l-th step is

$$
L_{0}(e)+x_{n_{1}}(e)+\ldots+x_{n_{l}}(e) .
$$

This implies that the demand on the edge e at each step does not exceed

$$
\begin{aligned}
& L_{0}(e)+\max _{1 \leq l \leq k} \max _{e \in E}\left|x_{n_{1}}(e)+\ldots+x_{n_{l}}(e)\right|= \\
& L_{0}(e)+\max _{1 \leq l \leq k}\left\|x_{n_{1}}(e)+\ldots+x_{n_{l}}(e)\right\|_{\infty},
\end{aligned}
$$

where $\|\cdot\|_{\infty}$ denotes the maximum norm. Thus we have come to the problem of finding a permutation $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \quad$ minimizing

$$
r(\pi)=\max _{1 \leq \leq \leq k}\left\|x_{n_{1}}(e)+\ldots+x_{n_{l}}(e)\right\|,
$$

where the permutation π is defined by the sequence n_{1}, \ldots, n_{k}.

REFERENCES

[1] M. Makai, "Reroute sequence planning in telecommunication networks and compact vector summation." Appl. Math. Comp., 150, pp. 785-801, 2004.
[2] S.A. Chobanyan, "Convergence a.s. of rearranged random series in Banach space and associated inequalities." Probability in Banach Spaces 9, pp. 3-29, Boston, Birkhauser, 1994.
[3] L.A. Chobanyan, S.A. Chobanyan, G. Giorgobiani, "A maximum inequality for rearrangements of summands and its applications to orthogonal series and scheduling theory." Bulletin Georgian National Academy of Sciences, 5, 16-21, 2011.

