
ScallaScalla AdvancementsAdvancements
xrootd /cmsd (f.k.a. olbd)

Fabrizio Furano
CERN – IT/GS

Andrew Hanushevsky
Stanford Linear Accelerator Center

Cern Seminar
Stanford University/SLAC

9-May-08

http://xrootd.slac.stanford.edu

9-May-08 2: http://xrootd.slac.stanford.edu

Outline

Introduction
Current Developments

Composite Cluster Name Space
POSIX file system access via FUSE+xrootd

SRM support
Cluster Management Service (cmsdcmsd)

Cluster globalization
Virtual MSS

Bandwidth Scheduling
Directed Support Services

Announcements
Conclusion

9-May-08 3: http://xrootd.slac.stanford.edu

What is ScallaScalla?

SStructured CCluster AArchitecture for
LLow LLatency AAccess

Low latency access to data via xrootdxrootd servers
POSIX-style byte-level random access

Hierarchical directory-like name space of arbitraryarbitrary files
• Does not have full file system semantics
• This is notnot a general purpose data management solution

Protocol includes high performance & scalability features
Structured clustering provided by cmsdcmsd servers

Exponentially scalable and self organizing

9-May-08 4: http://xrootd.slac.stanford.edu

General Design Points
High speed access to experimentalexperimental data

Write once read many times processing mode
Small block sparse random access (e.g., root files)
High transaction rate with rapid request dispersal (fastfast opens)

Low setup cost
High efficiency data server (low CPU/byte overhead, small memory footprint)
Very simple configuration requirements
No 3rd party software needed (avoids messy dependencies)

Low administration cost
Non-assisted fault-tolerance
Self-organizing servers remove need for configuration changes
No database requirements (no backup/recovery issues)

Wide usability
Full POSIX access
Server clustering for scalability
Plug-in architecture and event notification for applicability (HPSS, CastorCastor, etc)

9-May-08 5: http://xrootd.slac.stanford.edu

Management
(XMI Castor, DPM)

lfn2pfn
prefix encoding

Storage System
(oss, drm/srm, etc)

authentication
(gsi, krb5, etc)

Clustering
(cmsd)

authorization
(name based)

File System
(ofs, sfs, alice, etc)

Protocol (1 of n)
(xrootd)

xrootd Plugin Architecture

Protocol Driver
(Xrd)

Many ways to accommodate other systemsMany ways to accommodate other systems

EventsEvents EventsEvents
EventsEvents

9-May-08 6: http://xrootd.slac.stanford.edu

Architectural Significance

Plug-in Architecture Plus Events
Easy to integrate other systems

Orthogonal Design
Uniform client view irrespective of server function

Easy to integrate distributed services
System scaling always done in the same way

Plug-in Multi-Protocol Security Model
Permits real-time protocol conversion

System Can Be Engineered For Scalability
Generic clustering plays a significant role

9-May-08 7: http://xrootd.slac.stanford.edu

Very carefully crafted, heavily multithreaded
Server side: promote speed and scalability

High level of internal parallelism + stateless
Exploits OS features (e.g. async i/o, polling, selecting)
Many many speed+scalability oriented features
Supports thousands of client connections

Client: Handles the state of the communication
Constructs a simple interface from complex interactions

Fast data path
Network pipeline coordination + latency hiding
Supports connection multiplexing + intelligent server cluster
crawling

Server and client exploit multi core CPUs natively

Single point performance

9-May-08 8: http://xrootd.slac.stanford.edu

Server side
If servers go down, the overall functionality can be fully preserved

Redundancy, MSS staging of replicas, …
Means that static deployments can be avoided

E.g. storing in a DB the physical endpoint addresses for each file

Client side (+protocol)
The application never notices errors

Totally transparent, until they become fatal
i.e. when it becomes really impossible to get to a working endpoint to
resume the activity

Typical tests (try it!)
Disconnect/reconnect network cables
Kill/restart servers

Fault tolerance

9-May-08 9: http://xrootd.slac.stanford.edu

Flexible, multi-protocol system
Abstract protocol interface: XrdSecInterface

Protocols implemented as dynamic plug-ins
Architecturally self-contained

NO weird code/libs dependencies (requires only openssl)
High quality highly optimized code, great work by Gerri Ganis

Embedded protocol negotiation
Servers define the list, clients make the choice
Servers lists may depend on host / domain

One handshake per process-server connection
Reduced overhead:
of handshakes ≤ # of servers contacted

Exploits multiplexed connections
no matter the number of file opens

Authentication
Courtesy of Gerardo Ganis (CERN PH-SFT)

9-May-08 10: http://xrootd.slac.stanford.edu

Authentication Protocols
Courtesy of Gerardo Ganis (CERN PH-SFT)

Password-based (pwd)‏
Either system or dedicated password file

User account not needed
GSI (gsi)‏

Handle GSI proxy certificates
VOMS support should be OK now (Andreas, Gerri)
No need of Globus libraries (and super-fast!)

Kerberos IV, V (krb4, krb5)
Ticket forwarding supported for krb5
Fast ID (unix, host) to be used w/ authorization

Unix (unix)
Simple nfs-like protocol to supply uid/gid

ALICE security tokens
Emphasis on ease of setup and performance

9-May-08 11: http://xrootd.slac.stanford.edu

The Distributed Name Space

ScallaScalla implements a distributed name space
Very scalable and efficient
Sufficient for data analysis

Some users and applications (e.g., SRM) rely
on a centralized name space

Spurred the development of a Composite Name
Space (cnsdcnsd) add-on

Simplest solution with the least entanglement

9-May-08 12: http://xrootd.slac.stanford.edu

Composite Cluster Name Space

Redirector
xrootd@myhost:1094

Name Space
xrootd@myhost:2094

Data Data
ServersServers

ManagerManager

cnsd
ofs.notify closew, create, mkdir, mv, rm, rmdir |/opt/xrootd/etc/cnsd

open/trunc
mkdir

mv
rm

rmdir

opendir() refers to the directory structure maintained by xrootd:2094

Client

9-May-08 13: http://xrootd.slac.stanford.edu

cnsdcnsd Specifics

Servers direct name space actions to common xrootd(s)
Common xrootd maintains composite name space

Typically, these run on the redirector nodes

Name space replicated in the file system
No external database needed
Small disk footprint

Deployed at SLAC for Atlas
Needs synchronization utilities, more documentation, and packaging

See Wei Yang for details
Similar mySQL based system being considered by CERN/Atlas

Annabelle Leung <annabelle.leung@cern.ch>

9-May-08 14: http://xrootd.slac.stanford.edu

Data System vs File System

ScallaScalla is a data access system
Some users/applications want file system semantics

More transparent but many times less scalable

For years users have asked ….
Can ScallaScalla create a file system experience?

The answer is ….
It can to a degree that may be good enough

We relied on FUSEFUSE to show how

9-May-08 15: http://xrootd.slac.stanford.edu

What is FUSEFUSE

FFilesystem in UUsersspacee
Used to implement a file system in a user space program

Linux 2.4 and 2.6 only
Refer to http://fuse.sourceforge.net/

Can use FUSE FUSE to provide xrootd access
Looks like a mounted file system

SLAC and FZK have xrootd-based versions of this
Wei Yang at SLAC

Tested and practically fully functional
Andreas Petzold at FZK

In alpha test, not fully functional yet

9-May-08 16: http://xrootd.slac.stanford.edu

XrootdFS (Linux/FUSE/Xrootd)

Redirector
xrootd:1094

Name Space
xrootd:2094RedirectorRedirector

HostHost

ClientClient
HostHost opendir

create
mkdir

mv
rm

rmdir

xrootd POSIX Client

Kernel

User Space

Appl

POSIX File System
Interface FUSE

FUSE/Xroot Interface

Should run cnsd on servers
to capture non-FUSE events

9-May-08 17: http://xrootd.slac.stanford.edu

XrootdFS Performance

Sun V20z
RHEL4

2x 2.2Ghz AMD Opteron
4GB RAM

1Gbit/sec Ethernet

Client

VA Linux 1220
RHEL3

2x 866Mhz Pentium 3
1GB RAM

100Mbit/sec Ethernet

Unix dd, globus-url-copy & uberftp
5-7MB/sec with 128KB I/O block size

Unix cp 0.9MB/sec with 4KB I/O block size

Conclusion: Better for some things than othersConclusion: Better for some things than others..

9-May-08 18: http://xrootd.slac.stanford.edu

Why XrootdFS?

Makes some things much simpler
Most SRM implementations run transparently
Avoid pre-load library worries

But impacts other things
Performance is limited

Kernel-FUSE FUSE interactions are not cheap
Rapid file creation (e.g., tar) is limited

FUSE FUSE must be administratively installed to be used
Difficult if involves many machines (e.g., batch workers)
Easier if it involves an SE node (i.e., SRM gateway)

9-May-08 19: http://xrootd.slac.stanford.edu

What does this buy you?

Generally compatible SRM support
Integrated with the LBNL bestman SRM

Interoperable with all current SRM implementations

Supports static SRM space tokens
Fully integrated with xrootd
Quotas applied at the Fuse layer

xrootd keeps track of usage by space token

Fully operational for US Atlas

9-May-08 20: http://xrootd.slac.stanford.edu

Next Generation Clustering

Cluster Management Service (cmsdcmsd)
Functionally replaces olbd

Compatible with olbd config file
Unless you are using deprecated directives

Straight forward migration
Either run olbd or cmsd everywhere

Currently in being deployed
Alice & US Atlas
Available in CVS head
Documentation on web site

9-May-08 21: http://xrootd.slac.stanford.edu

cmsdcmsd Advantages I

New protocol
Compact binary format

8-byte request/response header

Architected for minimal data copying
Eliminates data conversions between xrootd/cmsd
Symmetric parameterized build/parse object

Easy to maintain and add new request types
Allows central dispatching of sync/async requests

9-May-08 22: http://xrootd.slac.stanford.edu

cmsdcmsd Advantages II

Much lower latency
New protocol reduces processing time
New super fast light-weight location cache
State echoing to avoid repeat calculations
Verifiable pointers for shorter lock duration
Deferred server pinning for non-I/O requests

Fast prepare, locate, stat, etc.

Fully threaded architecture

9-May-08 23: http://xrootd.slac.stanford.edu

cmsdcmsd Advantages III

Better fault detection and recovery
Constant algorithm keeps track of needed re-queries

Provides linear performance w.r.t. cache size
Provides parallel redirect whenever possible

Recognition of access conflicts
E.g., write access when more than one copy exists

Suspend event forwarding
The xrootd redirector handles service suspensions

9-May-08 24: http://xrootd.slac.stanford.edu

cmsdcmsd Advantages IVa

Added functionality
Global clusters
Authentication

Uses standard xrootd framework
Uniform handling of opaque (i.e., cgi) information

Available to all plug-ins
More meaningful space controls

Sensitive to server capacity
Allows space utilization as a selection parameter

9-May-08 25: http://xrootd.slac.stanford.edu

cmsdcmsd Advantages IVb

Added functionality
Staging vs Online differentiation

Allows selection of online files while staging other copies

Complete request forwarding
rm, rmdir, mv now forwarded to the xrootd server

End-to-end request ID forwarding
Automatic whenever tracing enabled
Allows tracking client requests throughout the cluster

9-May-08 26: http://xrootd.slac.stanford.edu

cmsdcmsd Migration

Basically a rewrite of critical olbd objects
Better implementation for reduced maintenance cost

The olbd supported only for bug fixes
New development is cmsd-focused

Provides basic backward compatibility
Read the migration guide for caveats

Configuration file compatible
If you didn’t use deprecated directives

9-May-08 27: http://xrootd.slac.stanford.edu

Cluster Globalization

cmsdcmsd

xrootdxrootd

UTA

cmsdcmsd

xrootdxrootd

UOM

cmsdcmsd

xrootdxrootd

BNL all.role meta manager
all.manager meta atlas.bnl.gov:1312root://root://atlas.bnl.govatlas.bnl.gov//

includesincludes
SLAC, UOM, UTASLAC, UOM, UTA

xrootxroot clustersclusters

Meta Managers can be
geographically replicated!

cmsdcmsd

xrootdxrootd

SLAC
all.manager meta atlas.bnl.gov:1312 all.manager meta atlas.bnl.gov:1312 all.manager meta atlas.bnl.gov:1312
all.role manager all.role manager all.role manager

9-May-08 28: http://xrootd.slac.stanford.edu

Why Globalize?

Uniform view of participating clusters
Can easily deploy a virtual MSS

Included as part of the existing MPS framework

Try out real time WAN access
You really don’t need data everywhere!

Alice is moving in this direction
The non-uniform name space problems solved

9-May-08 29: http://xrootd.slac.stanford.edu

Virtual MSS

Powerful mechanism to increase reliability
Data replication load is widely distributed
Multiple sites are available for recovery

Allows virtually unattended operation
Based on BaBar experience with real MSS
Automatic restore due to server failure

Missing files in one cluster fetched from another
Typically the fastest one which has the file really online

File (pre)fetching on demand
Can be transformed into a 3rd-party copy

When cmsd is deployed
Practically no need to track file location

But does not preclude the need for metadata repositories

9-May-08 30: http://xrootd.slac.stanford.edu

The Virtual MSS Realized

cmsdcmsd

xrootdxrootd

UTA

cmsdcmsd

xrootdxrootd

UOM

cmsdcmsd

xrootdxrootd

BNL all.role meta manager
all.manager meta atlas.bnl.gov:1312

all.role manager all.role manager all.role manager

Note:
the security hats will likely

require you use xrootd
native proxy support

cmsdcmsd

xrootdxrootd

SLAC

But missing a file?
Ask to the global metamgr

Get it from any other
collaborating cluster

all.manager meta atlas.bnl.gov:1312 all.manager meta atlas.bnl.gov:1312 all.manager meta atlas.bnl.gov:1312

Local clients still
continue to work

9-May-08 31: http://xrootd.slac.stanford.edu

Copying Data Has It’s Downside

Network bandwidth intensive
xrootd can blithely use all that is available

Need extensive bandwidth controls
Target domain, dynamic priority, duration, etc.

Need extensive real-time monitoring
Points out the need for bandwidth manager

Easy to robustly do with ScallaScalla
Simply use a specialized xrootd server!

9-May-08 32: http://xrootd.slac.stanford.edu

The Bandwidth Managers

cmsdcmsd

xrootdxrootd

Src

cmsdcmsd

xrootdxrootd

Dest

vstagevstage

1 vstage launched to get the file

xrootdxrootd
bwmbwm pluginplugin

clientclient

xrootdxrootd
bwmbwm pluginplugin

open nonopen non--present filepresent file

open(/_bwm_/lfn?src=x&dst=y)
query(xattr)2

Query completed via callback
when policy has been met3

xrdcp launched to copy data4

Write(fsize,eseconds)
Close() when copy completed

Bandwidth statistics computed
5

9-May-08 33: http://xrootd.slac.stanford.edu

Why Do It This Way?

Reuses the Scalla paradigm
Lightweight and database-free

Very little administrative effort
Very little new code

Much less to maintain
Recovery is automatic when bwmbwm fails

Can easily have a hot spare
Transfers can even cautiously proceed w/o a bwmbwm

Avoids desperate late-night pages
The The ScallaScalla DDirected irected SSupport upport SServices Architectureervices Architecture

9-May-08 34: http://xrootd.slac.stanford.edu

Scalla DSS Advantages

Advertisement is unnecessary in ScallaScalla DSSDSS
Services accessed via well known path prefixes

Always accessed via well-known redirectors
Redirectors know location of the prefix/service mapping

Works even if service is not deployed in a cluster
Dynamically deployable and changeable
Hot spares managed via DNS aliasing

Authentication & Authorization available
Uses the standard Scalla security framework

9-May-08 35: http://xrootd.slac.stanford.edu

Scalla DSS Caveat!

This is generally a co-operative model
It can be bypassed
But, it works sufficiently well for >80% of cases

Can be made mandatory
Using signed cookies

Usually too expensive and complex to be worthwhile

9-May-08 36: http://xrootd.slac.stanford.edu

BWM Configuration

Minimal Symmetric Configuration
In each redirector

xrootd.redirect bwmhost:port /_bwm_/

In each bwmbwm xrootd
xrootd.export /_bwm_/ nolock
xrootd.ofslib bwm_plugin.so
bwm.policy { file filepath oror lib policy_plugin.so }
bwm.log { * oror |program }

qtod, resptod, endtod, id, src, dst, lfn, fsize, tsec

9-May-08 37: http://xrootd.slac.stanford.edu

BWM Policy

Default simple endpoint pair scheduling
In real-time policy file

maxslots number
endpoint domain incoming% outgoing% reserve%

Repeat as necessaryRepeat as necessary

Might add additional constraints
E.g., maximum bandwidth by endpoint

However, complex policies can be implemented
Write your own policy plug-in

ButBut……
do we really need to copy all th

is d
ata?

do we really need to copy all th
is d

ata?

9-May-08 38: http://xrootd.slac.stanford.edu

Dumb WAN Access**

Setup: client at CERN, data at SLAC
164ms RTT time, available bandwidth < 100Mb/s

Test 1: Read a large ROOT Tree
(~300MB, 200k interactions)

Expected time: 38000s (latency)+750s (data)+CPU➙10 hrs!

Test 2: Draw a histogram from that tree data
(6k interactions)

Measured time 20min
Using xrootd with WAN optimizations disabled

**Federico Federico CarminatiCarminati, , The The ALICE ALICE Computing Status and ReadinessComputing Status and Readiness, LHCC, November 2007, LHCC, November 2007

9-May-08 39: http://xrootd.slac.stanford.edu

Smart WAN Access**

Exploit xrootd WAN Optimizations
TCP multi-streaming: for up to 15x improvement data WAN throughput
The ROOT TTreeCache provides the hints on ”future” data accesses
TXNetFile/XrdClient ”slide through” keeping the network pipeline full

Data transfer goes in parallel with computation
Throughput improvement comparable to “batch” file-copy tools

70-80%, improvement and we are doing a live analysis, not a file copy!
Test 1 actual time: 60-70 seconds

Compared to 30 seconds using a Gb LAN
Very favorable for sparsely used files

Test 2 actual time: 7-8 seconds
Comparable to LAN performance

100x improvement over dumb WAN access (i.e., 20 minutes)

**Federico Federico CarminatiCarminati, , The The ALICE ALICE Computing Status and ReadinessComputing Status and Readiness, LHCC, November 2007, LHCC, November 2007

9-May-08 40: http://xrootd.slac.stanford.edu

Announcements!Announcements!

The CERN-based Scalla web page is online!
http://savannah.cern.ch/projects/xrootd/

Scalla CVS repository is going public!
Will be located in afs with unrestricted read access
Planning on providing web access

9-May-08 41: http://xrootd.slac.stanford.edu

Conclusion

Scalla is a robust framework
Elaborative

Composite Name Space
XrootdFS
SRM

Extensible
Cluster globalization
Bandwidth scheduling

Many opportunities to enhance data analysis
Simplicity, Speed and Efficiency

9-May-08 42: http://xrootd.slac.stanford.edu

Acknowledgements

Current software Collaborators
Andy Hanushevsky, Fabrizio Furano
Root: Fons Rademakers, Gerri Ganis (security), Bertrand Bellenot (windows)

Alice: Derek Feichtinger, Andreas Peters, Guenter Kickinger
STAR/BNL: Pavel Jackl, Jerome Lauret
SLAC: Jacek Becla, Tofigh Azemoon, Wilko Kroeger

Operational collaborators
BNL, CERN, CNAF, FZK, INFN, IN2P3, GSI, RAL, SLAC

SLAC Funding
US Department of Energy

Contract DE-AC02-76SF00515 with Stanford University

