Framework for Extracting (Effective) Higgs Couplings in $h \rightarrow 4\ell$

Roberto Vega-Morales

Laboratoire de Physique Théorique d'Orsay (Work Supported by ERC Advanced Grant Higgs@LHC)

LHC Higgs XS WG2 Meeting CERN: September 5, 2014

Parametrization of Effective Couplings

• Can consider the following $d \lesssim 5$ Lagrangian

$$\mathcal{L} \supset \frac{1}{4v} \Big(2A_1^{ZZ} m_Z^2 h Z^{\mu} Z_{\mu} + A_2^{ZZ} h Z^{\mu\nu} Z_{\mu\nu} + A_3^{ZZ} h Z^{\mu\nu} \widetilde{Z}_{\mu\nu}$$

$$- 4A_4^{ZZ} h Z_{\mu} \Box Z^{\mu} - 2A_5^{ZZ} (\frac{m_Z}{m_h})^2 \Box h Z_{\mu} Z^{\mu}$$

$$+ 2A_2^{Z\gamma} F^{\mu\nu} Z_{\mu\nu} + 2A_3^{Z\gamma} F^{\mu\nu} \widetilde{Z}_{\mu\nu} + A_2^{\gamma\gamma} F^{\mu\nu} F_{\mu\nu} + A_3^{\gamma\gamma} F^{\mu\nu} \widetilde{F}_{\mu\nu} \Big)$$

- In 1-to-1 mapping to usual d = 6 operators using Higgs doublet
- Leads to the vertex structures,

$$\Gamma_{i}^{\mu\nu} = \frac{i}{v} \Big((A_{1}^{i} + A_{4}^{i} (\frac{k_{1}^{2} + k_{2}^{2}}{m_{Z}^{2}}) + A_{5}^{i} (\frac{\hat{s}}{m_{h}^{2}})) m_{Z}^{2} g^{\mu\nu} + A_{2}^{i} (k_{1}^{\nu} k_{2}^{\mu} - k_{1} \cdot k_{2} g^{\mu\nu}) + A_{3}^{i} \epsilon^{\mu\nu\alpha\beta} k_{1\alpha} k_{2\beta} \Big)$$

(where
$$A_1^{Z\gamma,\gamma\gamma} = A_4^{Z\gamma,\gamma\gamma} = A_5^{Z\gamma,\gamma\gamma} = 0$$
)

- Note that only sensitive to A_5^{ZZ} for off-shell Higgs decays
- Need framework which can extract these couplings simultaneously

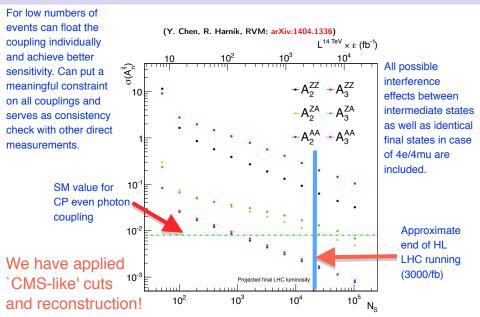
Constructing 'Sensitivity Curves'

- Let us start by examining 'sensitivity curves' for the hVV' loop induced couplings as a function of number of events (or luminosity)
- Consider a (slightly) simplified parametrization (fixing $A_1^{ZZ} = 2$):

$$\mathcal{L} \supset \frac{h}{4v} \Big(2A_1^{ZZ} m_Z^2 Z^{\mu} Z_{\mu} + A_2^{ZZ} Z^{\mu\nu} Z_{\mu\nu} + A_3^{ZZ} Z^{\mu\nu} \widetilde{Z}_{\mu\nu} + 2A_2^{Z\gamma} F^{\mu\nu} Z_{\mu\nu} + 2A_3^{Z\gamma} F^{\mu\nu} \widetilde{Z}_{\mu\nu} + A_2^{\gamma\gamma} F^{\mu\nu} F_{\mu\nu} + A_3^{\gamma\gamma} F^{\mu\nu} \widetilde{F}_{\mu\nu} \Big)$$

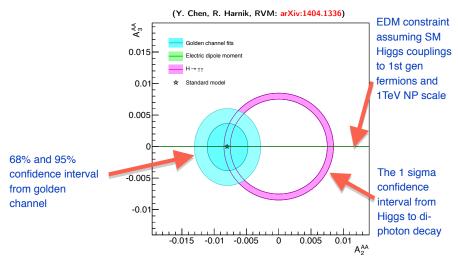
We perform a 6D parameter fit to the 6 loop induced couplings:

$$\vec{A} = (A_2^{ZZ}, A_3^{ZZ}, A_2^{Z\gamma}, A_3^{Z\gamma}, A_2^{\gamma\gamma}, A_3^{\gamma\gamma})$$


(In SM A_2^i generated at 1-loop and $\mathcal{O}(10^{-2}-10^{-3})$ while A_3^i only appear at 3-loop)

- All couplings floated simultaneously to keep all correlations
- We plot the 'average error' as function of number of events:

$$\sigma = \sqrt{\frac{\pi}{2}} \langle |\hat{A} - \vec{A}_o| \rangle$$


 $(\hat{A} \text{ is best fit point, } \vec{A}_o \text{ is 'true' value, and average taken over large set of PE})$

Sensitivity Projections for Couplings: $\vec{A}_o = (0, 0, 0, 0, 0, 0)$

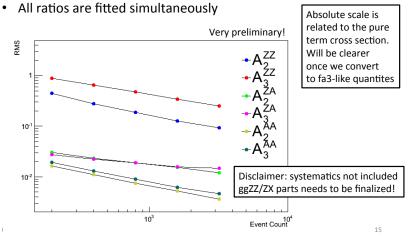
Golden Channel vs. $h \to \gamma \gamma$ and EDMs: $\vec{A}_o = (0,0,0,0,-0.008,0)$

• What can be done with $\sim 3000 fb^{-1}$ in golden channel vs. $h \to \gamma \gamma$?

LHC should directly establish CP nature of Higgs couplings to photons!

'Detector level' Likelihood

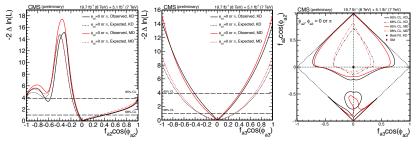
- Of course what we really want is to do all of this at 'detector level'
- Need a likelihood that takes reconstructed observables as input
- This can be done by a convolution of the analytic 'generator level' pdf with a transfer function $T(\vec{X}^R|\vec{X}^G)$ over generator level observables


$$P(\vec{X}^{R}|\vec{A}) = \int P(\vec{X}^{G}|\vec{A})T(\vec{X}^{R}|\vec{X}^{G})d\vec{X}^{G}$$
$$\vec{X} \equiv (\vec{p}_{T}, Y, \phi, \hat{s}, M_{1}, M_{2}, \vec{\Omega})$$

Note: Not done by MC integration \Rightarrow done via C.O.V. and numerical techniques

- $T(\vec{X}^R|\vec{X}^G)$ represents probability to observe \vec{X}^R given \vec{X}^G
- Can be optimized for specific detector and included in convolution
- This integration takes us from generator level observables (\vec{X}^G) to detector level (reconstructed) observables (\vec{X}^R)
- Conceptually simple, but requires a number of steps to perform (and massive computing) details in arXiv:1401.2077 and technical note to appear soon
- We have performed this 12-D convolution for signal and background

The 6D Fit at Detector Level: $\vec{A}_o = (0, 0, 0, 0, 0, 0)$


- We perform same 'toy' 6D fit as in generator (signal only) case
- Includes detector as well as (most) background and production effects

• We see very similar sensitivity to 'generator level' analysis

Framework in CMS Analysis: CMS PAS HIG-14-014

ullet Used in recent CMS study of anomalous hVV couplings in $h o 4\ell$

- Used in a limited scope so as validate with other other frameworks
- Performance in these cases was found to be similar
- Can begin utilizing full power of framework in future studies
- A simultaneous extraction of all effective Higgs couplings!

Summary

- Can use $h \to 4\ell$ to extract Higgs couplings to $ZZ, Z\gamma$, and $\gamma\gamma$
- ullet For anomalous couplings strongest sensitivity will be for $\gamma\gamma$
- We have built a complete framework which can extract all couplings simultaneously and at 'detector level' in short computing time
- Independent of parametrization and easily adapted to whichever parametrization is most convenient at a given time
- Also can be used to search for other NP like exotic Higgs decays
- Framework is also easily adapted to $h o 2\ell \gamma$ and $h o \gamma \gamma$

THANKS!

For more information see:

- Y. Chen, N. Tran, RVM: arXiv:1211.1959,
- Y. Chen, RVM: arXiv:1310.2893,
- Y. Chen, E. DiMarco, J. Lykken, M. Spiropulu, RVM, S. Xie: arXiv:1401.2077,
- Y. Chen. R. Harnick, RVM: arXiv:1404.1336.
- CMS Collaboration: CMS PAS HIG-14-014

Extra Slides

The Full PDF

We need a function for the 'production' spectrum to form full pdf

$$\begin{split} P(\vec{p}_T, Y, \phi, \hat{s}, M_1, M_2, \vec{\Omega} | \vec{A}) &= \\ W_{\text{prod}}(\vec{p}_T, Y, \phi, \hat{s}) \times \frac{d\sigma_{4\ell}(\hat{s}, M_1, M_2, \vec{\Omega} | \vec{A})}{dM_1^2 dM_2^2 d\vec{\Omega}} \end{split}$$

Note decay part treated at fixed \hat{s}

- For signal W_{prod} includes NLO $gg \rightarrow h$ process (can include VBF)
- For BG NLO $q\bar{q} \rightarrow 4\ell, gg \rightarrow 4\ell, qg, q\bar{q} \rightarrow 4\ell + j$ (and Z + X)
- Of course W_{prod} also includes parton distribution functions
- Several options for obtaining W_{prod} :
 - Compute as much analytically as possible
 - lacktriangle Can construct 'analytic parametrizations' of W_{prod}
 - Use 'look up' tables and boost events accordingly
 - A 'hybrid method' of these approaches
- Since we ultimately fit to ratios of parameters and average over (\vec{p}_T, Y, ϕ) , analysis largely insensitive to 'production effects'
- Enters mainly as an acceptance effect due to detector

Constructing a Maximum Likelihood Analysis

A likelihood can be formed out of probability density functions (pdfs)
using some set of observables as follows

$$L(\vec{A}) = \prod_{\mathcal{O}}^{N} \mathcal{P}(\mathcal{O}|\vec{A})$$

(where \mathcal{O} is set of observables and \vec{A} a set of undetermined parameters)

- $\mathcal{P}(\mathcal{O}|\vec{A})$ built out of fully differential cross section for observables
- The pdf takes in the set observables O as its input
- $L(\vec{A})$ is a function of undetermined parameters and represents the likelihood for observing a given data set (N events of \mathcal{O})
- With this one can go on to do direct parameter extraction of \vec{A}

Parameter Extraction From Maximum Likelihood

ullet This is done by maximizing the likelihood with respect to \vec{A}

$$\frac{\partial L(\vec{A})}{\partial \vec{A}}\Big|_{\vec{A} = \hat{A}} = 0$$

- For a given data set of N events \hat{A} gives the value of the parameter which maximizes the likelihood OR the most likely value of \vec{A}
- To estimate error repeat for a large set of $\mathcal N$ pseudo-experiments and obtain a distribution for $\hat A$ with a given spread and average value $\bar A$
- The true value \vec{A}_o will sit in some interval around \bar{A}
- ullet In the limit as $\mathcal{N}
 ightarrow \infty$ one will find $ar{A}
 ightarrow ec{A}_o$
- Conceptually straightforward, but technically challenging...

Summary of Framework for Parameter Extraction

Extracting of Effective Higgs Couplings in Golden Channel

- Obtain analytic generator level pdf $P(\vec{X}^G | \vec{A})$ (i.e. fully diff cxn)
- Perform convolution with transfer function over 12 CM variables

$$P(\vec{X}^{\mathrm{R}}|\vec{A}) = \int P(\vec{X}^{\mathrm{G}}|\vec{A})T(\vec{X}^{R}|\vec{X}^{G})d\vec{X}^{\mathrm{G}}$$

• Normalize over \vec{X}^R ; build detector level likelihood as function of \vec{A}

$$L(\vec{A}) = \prod_{\vec{X}^R}^N \mathcal{P}(\vec{X}^R | \vec{A})$$

Maximize likelihood with respect to undetermined parameters

$$\frac{\partial L(\vec{A})}{\partial \vec{A}}\Big|_{\vec{A} = \hat{A}} = 0$$

• Obtain \hat{A} for data set of N observables \Rightarrow Extract Higgs couplings

Advantages of Framework for Parameter Extraction

- Speed, Stability, and Precision:
 - ▶ Because final likelihood is an 'analytic' (simple quadratic) function of parameters \vec{A} , once likelihood is built, parameter fitting extremely fast
 - ► Even for large number of events or multi-dimensional parameter fits
 - Maximum of the likelihood is always found with very high convergence rate (> 99%) ⇒ accurate and precise extraction of parameters
- Flexibility and Generality:
 - One can easily perform any combination of parameter fits desired
 - ► Trivial to perform reparametrizations of parameters for more intuitive interpretation or to avoid degeneracies in parameter space
 - ► Allows us to account for potential correlations between parameters
 - ► Can incorporate different transfer functions to include detector effects
 - ▶ Easy to include other exotic Higgs interactions, i.e. Z's, VLLs, etc.
- Intuitiveness and Transparency of Physics:
 - ► Conceptually straightforward: we simply maximize the likelihood, no hypothesis testing or construction of descriminants
 - ▶ Interpretation of physics is straightforward and transparent
- Likelihood is (mostly) un-binned and uses all 8 decay observables!