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Parametrization of Effective Couplings

Can consider the following d . 5 Lagrangian
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5 ). Since we are only interested in on-shell Higgs decays right now we will simply
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I think it is probably a good idea to include the AZZ
4 term into our framework. It is of the same

dimension as the AZZ
2 and AZZ

3 operators so technically should be included. Also, should have
large interference with AZZ

1 (I think) yet di�erent M1, M2 dependence so its possible we may even
be sensitive to it. Could be very interesting.
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where RZZ =
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|AZZ
1 |2 + |AZZ

2 |2 + |AZZ
4 |2 (need to check this).

So in summary, our final most general Lagrangian is,
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which leads to the general vertex structure,
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where AZ�,�
1 = AZ�,�

4 = AZ�,�
5 = 0.

Phase Space for Generated Events:

• mh = 125 GeV,

• pT � > 2 GeV for lepton pT ,

• |��| < 1 for the lepton rapidity,

• 4 GeV � M1 and 4 GeV � M2.

Phase Space Cuts:

• pT � > 20, 10, 7, 7 GeV for lepton pT ordering,
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In 1-to-1 mapping to usual d = 6 operators using Higgs doublet
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Note that only sensitive to A

ZZ

5

for off-shell Higgs decays
Need framework which can extract these couplings simultaneously
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Constructing ‘Sensitivity Curves’

Let us start by examining ‘sensitivity curves’ for the hVV

0 loop
induced couplings as a function of number of events (or luminosity)
Consider a (slightly) simplified parametrization (fixing A

ZZ

1

= 2):

2

plings to photons with current experimental technology
and without theoretical assumptions.

Using a maximum likelihood analysis based on an an-
alytic framework developed in [31], we perform a simul-
taneous parameter extraction of the loop induced ZZ,
Z�, and �� e�ective Higgs couplings allowing for gen-
eral CP odd/even mixtures. We perform these fits for
a range of numbers of events assuming a pure SM data
set. We find that for values of couplings close to those
predicted by the SM, the golden channel has excellent
prospects to begin directly probing the Higgs couplings
to photons during LHC running with ⇠ 100 � 400fb�1

of luminosity (depending on detector performance and
production uncertainties) with less optimistic prospects
for the Z� and even less so for the loop induced ZZ cou-
plings. Our analysis is done at generator level neglecting
any detector e�ects as well as any backgrounds but as
we discuss further below, this is not expected to a�ect
our results dramatically or change our conclusions qual-
itatively [31, 32].

The results presented here motivate a detailed loop
analysis in order to make more precise quantitative
statements about the ability to extract these parame-
ters. They also suggest exciting potential for the golden
channel to discover new physics which may enter in the
loops that generate these e�ective couplings. We leave
a careful study of these issues to ongoing and future
work [32, 39]. For now we simply demonstrate qualita-
tively that the LHC has excellent prospects to establish
the CP nature of the Higgs couplings to photons, includ-
ing the overall sign, well before the end of high luminosity

LHC running. (⇠ 3 ab�1).
This paper is organized as follows: In Secs. II we dis-

cuss the parameterization of the various tensor couplings
which we will be fitting for as well as other aspects of
searching for anomalous couplings with the golden chan-
nel. In Sec. III we present our results where we estimate
the expected sensitivity of the golden channel to each
of the loop induced e�ective Higgs couplings to ZZ, Z�,
and �� pairs. Finally in Sec. IV we discuss briefly ongoing
and future work before concluding.

II. EXAMINING THE GOLDEN CHANNEL

In this section we examine various aspects of the
golden channel. We begin by parametrizing the Higgs
couplings to ZZ, Z�, and �� pairs. We then discuss some
of the observables which enable us to have sensitivity to
these couplings and the di�erent terms which contribute
to the di�erential cross section. We also examine the
magnitude of the e�ects of loop induced couplings and
discuss the interference e�ects.

A. Higgs Couplings to EW Bosons

We consider the leading contributions to the Higgs cou-
plings to neutral electroweak gauge bosons allowing for
general CP odd/even mixtures as well as for ZZ, Z�
and �� to contribute simultaneously. These couplings are
parametrized by the following Lagrangian,

L � h

4v

�
2AZZ

1 m2
ZZµZµ + AZZ

2 Zµ�Zµ� + AZZ
3 Zµ� �Zµ�

+ 2AZ�
2 Fµ�Zµ� + 2AZ�

3 Fµ� �Zµ� + A��
2 Fµ�Fµ� + A��

3 Fµ� �Fµ�

�
, (1)

where we have taken h real. We consider only up to di-
mension five operators and Zµ is the Z field while Vµ� =
�µV� � ��Vµ is the usual bosonic field strengths. The

dual field strengths are defined as �Vµ� = 1
2�µ���V ��. All

of the couplings are taken to be real1, dimensionless, and
constant. In principal they are form factors whose loop
functions have potentially strong momentum dependence
due to the highly o�-shell nature of the intermediate vec-
tor bosons. This is true even in the SM where at tree level
the only contribution is AZZ

1 , but at one loop momentum
dependent form factors of O(10�2 � 10�3) are generated
for the AZZ,Z�,��

2 operators [40, 41] by loops of SM par-

1 Our framework can easily accommodate complex couplings, but
we expect any phases to be small [35] and their inclusion is not
necessary in order to make our point.

ticles (AZZ,Z�,��
3 are also generated at higher loop order,

but these are totally negligible in comparison).

However, since we only aim to give a qualitative pic-
ture of the sensitivity and not a precise extraction of
these parameters, for the purposes of this study we work
within Higgs e�ective theory and approximate the cou-
plings as constant, as is done in other similar analy-
ses [13, 17, 21, 24, 28, 31, 32, 42]. Once sensitivity of
O(10�2 � 10�3) is achieved a more precise quantifica-
tion will require accounting for the full momentum de-
pendence, but we leave this to future work. Thus for
the remainder of this study we define as the SM point
AZZ

1 = 2 and take all other couplings ⇠ 0. The pur-
pose of this study is then to estimate at what point the
golden channel will reach sensitivities of O(10�2 � 10�3)
to the loop induced couplings assuming the ‘true’ value
of these couplings is that predicted by the SM (or close to
it). Achieving this level of sensitivity is exciting not only

We perform a 6D parameter fit to the 6 loop induced couplings:
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FIG. 4. The same as Fig. 3, but with AZZ
1 = 2 and all

other couplings to � 0.008. These values are useful to estimate
the sensitivities of the various terms at late stages of LHC
running. We see that interference terms with the SM (first
row) dominate over squared terms for all Ai

2,3.

terference terms between the signal operators and AZZ
1

dominate, with integrated magnitudes of ⇠ 10�2 � 10�3,
and much smaller magnitudes for terms that involve two
loop operators. These small magnitudes may give the im-
pression that there is no sensitivity in the golden channel
to couplings other than AZZ

1 for parameter points ‘close
to’ the SM. However as the discussion in previous sec-
tions indicates, one has much more information in the
h ! 4` fully di�erential decay width than just the inte-
grated magnitudes.

From our discussions of the integrated magnitudes and
di�erential spectra we naively expect that we should have
the strongest sensitivity to the �� couplings followed by
the Z� couplings and the weakest sensitivity to the loop
induced ZZ couplings. As we will show below, this indeed
turns out to be the case.

III. RESULTS

To obtain our results we use the machinery devel-
oped and described in detail in [31]. We will take the
SM tree level prediction of AZZ

1 = 2 as input and fit
to the remaining six couplings simultaneously. Floating
all parameters simultaneously ensures that we account
for potentially important correlations between the vari-
ous couplings [31]. Note also that by fixing AZZ

1 = 2 we
are implicitly fitting to ratios of couplings and taking the
overall normalization as input since it can be obtained
from measurements of the total rate. This also serves to
minimize the dependence of our results on any produc-
tion e�ects we have neglected.

For all of our results we combine the 2e2µ, 4e, and
4µ channels by computing the fully di�erential decay
width for each final state [24, 31] (including identical fi-
nal state interference for 4e and 4µ) and combining them
into one likelihood. The data sets which we fit to are gen-
erated from these expressions and contain a mixture of
all three final states whose proportions are determined
by the overall normalization of the di�erential widths for
each channel. Though we do not examine this issue here,
we note that the three channels do not possess the same
sensitivity. We leave a detailed examination of this inter-
esting point to an ongoing followup study [43].

A. Fit and Phase Space Definition

We define our six dimensional parameter space as,

~A = (AZZ
2 , AZZ

3 , AZ�
2 , AZ�

3 , A��
2 , A��

3 ). (6)

To estimate the sensitivity we obtain what we call an
‘e�ective’ � or average error defined as [44],

� =

�
�

2
�|Â � ~Ao|�, (7)

where Â is the value of the best fit parameter point ob-
tained by maximization of the likelihood with respect
to ~A. Here ~Ao represents the ‘true’ value with which our
data sets are generated. The average error is then found
by conducting a large number of pseudoexperiments with
a fixed number of events and obtaining a distribution for
Â which will have some spread centered around the av-
erage value. We then translate the width of this distri-
bution into our e�ective � which converges to the usual
interpretation of � when the distribution for Â is per-
fectly gaussian. We repeat this procedure for a range of
fixed number of signal events to obtain � as a function
of number of signal events NS .

We take the Higgs mass to be mh = 125 GeV and limit
our phase space to approximate the cuts used by CMS
as indicated by following cuts and reconstruction:

• pT � > 20, 10, 7, 7 GeV for lepton pT ordering,

• |��| < 2.4 for the lepton rapidity,

• 40 GeV � M1 and 12 GeV � M2.

Here M1 and M2 are the reconstructed masses of the two
lepton pairs. In reconstructing M1 and M2 we always
impose M1 > M2 and take M1 to be the reconstructed
invariant mass for a particle and anti-particle pair which
is closer to the Z mass. Note however that two other
lepton pairings are possible and equally valid, but we
leave an exploration of these alternate reconstructions
to ongoing work [43]. For further details on the fitting
(maximization) procedure and on the statistical analysis
see [31, 32].

(In SM A

i

2 generated at 1-loop and O(10

�2 � 10

�3) while A

i

3 only appear at 3-loop)

All couplings floated simultaneously to keep all correlations
We plot the ‘average error’ as function of number of events:
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1 for parameter points ‘close
to’ the SM. However as the discussion in previous sec-
tions indicates, one has much more information in the
h ! 4` fully di�erential decay width than just the inte-
grated magnitudes.
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erated from these expressions and contain a mixture of
all three final states whose proportions are determined
by the overall normalization of the di�erential widths for
each channel. Though we do not examine this issue here,
we note that the three channels do not possess the same
sensitivity. We leave a detailed examination of this inter-
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‘e�ective’ � or average error defined as [44],
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where Â is the value of the best fit parameter point ob-
tained by maximization of the likelihood with respect
to ~A. Here ~Ao represents the ‘true’ value with which our
data sets are generated. The average error is then found
by conducting a large number of pseudoexperiments with
a fixed number of events and obtaining a distribution for
Â which will have some spread centered around the av-
erage value. We then translate the width of this distri-
bution into our e�ective � which converges to the usual
interpretation of � when the distribution for Â is per-
fectly gaussian. We repeat this procedure for a range of
fixed number of signal events to obtain � as a function
of number of signal events NS .

We take the Higgs mass to be mh = 125 GeV and limit
our phase space to approximate the cuts used by CMS
as indicated by following cuts and reconstruction:

• pT � > 20, 10, 7, 7 GeV for lepton pT ordering,

• |��| < 2.4 for the lepton rapidity,

• 40 GeV � M1 and 12 GeV � M2.

Here M1 and M2 are the reconstructed masses of the two
lepton pairs. In reconstructing M1 and M2 we always
impose M1 > M2 and take M1 to be the reconstructed
invariant mass for a particle and anti-particle pair which
is closer to the Z mass. Note however that two other
lepton pairings are possible and equally valid, but we
leave an exploration of these alternate reconstructions
to ongoing work [43]. For further details on the fitting
(maximization) procedure and on the statistical analysis
see [31, 32].

(Â is best fit point,

~
A

o

is‘true’ value, and average taken over large set of PE)
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Sensitivity Projections for Couplings: ~
A

o

= (0, 0, 0, 0, 0, 0)

(Y. Chen, R. Harnik, RVM: arXiv:1404.1336)
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R. Vega-Morales Golden Channel Analysis Framework CERN: May, 5 2014 5 / 65
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Golden Channel vs. h ! �� and EDMs: ~
A

o

= (0, 0, 0, 0, �0.008, 0)

What can be done with ⇠ 3000fb

�1 in golden channel vs. h ! ��?
(Y. Chen, R. Harnik, RVM: arXiv:1404.1336)
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‘Detector level’ Likelihood

Of course what we really want is to do all of this at ‘detector level’
Need a likelihood that takes reconstructed observables as input
This can be done by a convolution of the analytic ‘generator level’ pdf

with a transfer function T (~XR |~XG ) over generator level observables

5

tion e�ciency and the imperfect momentum measure-
ment resolution of the detector. This can be represented
schematically as follows,

P ( ~XR| ~A) =

�
P ( ~XG| ~A)T ( ~XR| ~XG)d ~XG. (5)

Here we take ~X to represent the full set of center of
mass variables, including production and the flat o�-
set angle �, as ~X � (~pT , Y, �, ŝ, M1, M2, ~�). The trans-
fer function T ( ~XR| ~XG) is loosely based on the approxi-
mate performance of the CMS detector. It takes us from
generator (G) level to reconstructed (R) (detector level)
observables and is described in more detail in the Ap-
pendix. It represents the probability of reconstructing the
observables ~XR given the generator level observable ~XG

and is treated as a function of ~XR which takes ~XG as
input. The set of variables ~X exhausts the twelve de-
grees of freedom (note that ~pT has 2 components and
~� contains 5 angles) available to the four (massless) final
state leptons. The di�erential volume element is given by
d ~X = dŝdM2

1 dM2
2 d~� · d~pT dY d�. Upon integration over

all ~XG variables one obtains a pdf which encapsulates
the relevant detector e�ects.

The integral in Eq.(5) is the main result of this pa-
per and we emphasize that it has not been obtained
via Monte Carlo methods. Instead we have explicitly
performed the integration by utilizing various change
of variables and well-established numerical techniques
(see [31, 41–43] for new studies that perform similar
convolutions using Monte Carlo methods). This ensures
that (arbitrarily) high precision is maintained at each
step, producing what is e�ectively an ‘analytic function’
in terms of detector level variables once the convolu-
tion has been performed. After averaging over the pro-
duction variables (~pT , Y, �), this allows us to ultimately
construct a complete unbinned detector level likelihood,
which utilizes the full set of eight reconstructed decay
observables and is a continuous function of the e�ec-
tive couplings. Having the detector level likelihood as a
continuous function of all the e�ective Higgs couplings
allows us to easily perform multi-parameter extraction
with great speed and flexibility as was done at genera-
tor level [35]. By obtaining the 8-dimensional detector
level likelihood explicitly we avoid the need to fill large
multi-dimensional templates that require an impractical
amount of computing time; we also thus avoid the collat-
eral binning and often ‘smoothing’ side-e�ects.

While conceptually simple the convolution integral is
operationally challenging and in fact is most easily done
with a di�erent set of variables than those in the cen-
ter of mass frame. Since this step is crucial for perform-
ing the convolution we describe below an overview of
the necessary change of variables. The explicit details
of these transformations and their validations are given
in [36]. We note for now that the manner in which the
qq̄ ! 4` and h ! 4` expressions are calculated, as a sum
of the individual contributions [19, 35], makes the con-

volution feasible since one can perform the integration
on each smaller piece and then simply sum the separate
contributions. This is much more practical to do com-
putationally than to integrate the entire expressions at
once.

B. Changing Variables for Background pdf

We first discuss the construction of the background
detector level pdf and continue with the construction of
the signal as there is a subtle di�erence between these
two cases. Since there are no undetermined parameters in
the background the generator- and detector-level pdfs are
given simply by PB( ~XG) and PB( ~XR) respectively. In or-
der to perform the convolution with the transfer function
we first transform to a more convenient set of variables
in which the detector smearing is parametrized before
performing the integration.

To begin, we transform from the twelve center of mass
variables to the three momentum for the four final state
leptons. This can be represented as follows,

PB( ~XR) =

�
PB( ~XG)T ( ~XR| ~XG)d ~XG

=

�
PB( ~XG)T (~PR|~PG)

|J�P
G|

|J�P
R|

d~PG, (6)

where the di�erential volume element is now given by,

d~PG =
4�

i=1

d~p G
i , (7)

and ~p G
i is the generator level three momentum of the

i’th lepton. The |J�P
G| is the Jacobian associated with the

twelve dimensional change of variables from ~XG ! ~PG

in the di�erential volume element. The |J�P
R| arises from

the change of variables ~XR ! ~PR in the transfer function
(remembering T ( ~XR| ~XG) is treated as a function of ~XR)
which we loosely also refer to as a Jacobian, as we will do
for all subsequent change of variables to follow. Ideally
to find these Jacobian factors one should construct the
12�12 matrix associated with these transformations and
then calculate the determinant, but this is untenable an-
alytically since it must be constructed for each point in
phase space. We therefore implement a straightforward
numerical algorithm to calculate these factors for each
phase space point. This procedure is described in detail
and validated in [36].

Since we make the assumption that detector smear-
ing will only a�ect the component of the lepton momen-
tum parallel to the direction (pi||) of motion and not the
two components perpendicular to the direction of mo-
tion (~pi�) (which are zero at generator level) we find it
convenient to decompose the lepton three momenta ~pi

in terms of pi|| and ~pi�. Note that this assumption is
equivalent to assuming angular resolution e�ects due to

5

tion e�ciency and the imperfect momentum measure-
ment resolution of the detector. This can be represented
schematically as follows,

P ( ~XR| ~A) =

�
P ( ~XG| ~A)T ( ~XR| ~XG)d ~XG. (5)

Here we take ~X to represent the full set of center of
mass variables, including production and the flat o�-
set angle �, as ~X � (~pT , Y, �, ŝ, M1, M2, ~�). The trans-
fer function T ( ~XR| ~XG) is loosely based on the approxi-
mate performance of the CMS detector. It takes us from
generator (G) level to reconstructed (R) (detector level)
observables and is described in more detail in the Ap-
pendix. It represents the probability of reconstructing the
observables ~XR given the generator level observable ~XG

and is treated as a function of ~XR which takes ~XG as
input. The set of variables ~X exhausts the twelve de-
grees of freedom (note that ~pT has 2 components and
~� contains 5 angles) available to the four (massless) final
state leptons. The di�erential volume element is given by
d ~X = dŝdM2

1 dM2
2 d~� · d~pT dY d�. Upon integration over

all ~XG variables one obtains a pdf which encapsulates
the relevant detector e�ects.

The integral in Eq.(5) is the main result of this pa-
per and we emphasize that it has not been obtained
via Monte Carlo methods. Instead we have explicitly
performed the integration by utilizing various change
of variables and well-established numerical techniques
(see [31, 41–43] for new studies that perform similar
convolutions using Monte Carlo methods). This ensures
that (arbitrarily) high precision is maintained at each
step, producing what is e�ectively an ‘analytic function’
in terms of detector level variables once the convolu-
tion has been performed. After averaging over the pro-
duction variables (~pT , Y, �), this allows us to ultimately
construct a complete unbinned detector level likelihood,
which utilizes the full set of eight reconstructed decay
observables and is a continuous function of the e�ec-
tive couplings. Having the detector level likelihood as a
continuous function of all the e�ective Higgs couplings
allows us to easily perform multi-parameter extraction
with great speed and flexibility as was done at genera-
tor level [35]. By obtaining the 8-dimensional detector
level likelihood explicitly we avoid the need to fill large
multi-dimensional templates that require an impractical
amount of computing time; we also thus avoid the collat-
eral binning and often ‘smoothing’ side-e�ects.

While conceptually simple the convolution integral is
operationally challenging and in fact is most easily done
with a di�erent set of variables than those in the cen-
ter of mass frame. Since this step is crucial for perform-
ing the convolution we describe below an overview of
the necessary change of variables. The explicit details
of these transformations and their validations are given
in [36]. We note for now that the manner in which the
qq̄ ! 4` and h ! 4` expressions are calculated, as a sum
of the individual contributions [19, 35], makes the con-

volution feasible since one can perform the integration
on each smaller piece and then simply sum the separate
contributions. This is much more practical to do com-
putationally than to integrate the entire expressions at
once.

B. Changing Variables for Background pdf

We first discuss the construction of the background
detector level pdf and continue with the construction of
the signal as there is a subtle di�erence between these
two cases. Since there are no undetermined parameters in
the background the generator- and detector-level pdfs are
given simply by PB( ~XG) and PB( ~XR) respectively. In or-
der to perform the convolution with the transfer function
we first transform to a more convenient set of variables
in which the detector smearing is parametrized before
performing the integration.

To begin, we transform from the twelve center of mass
variables to the three momentum for the four final state
leptons. This can be represented as follows,

PB( ~XR) =

�
PB( ~XG)T ( ~XR| ~XG)d ~XG

=

�
PB( ~XG)T (~PR|~PG)

|J�P
G|

|J�P
R|

d~PG, (6)

where the di�erential volume element is now given by,

d~PG =
4�

i=1

d~p G
i , (7)

and ~p G
i is the generator level three momentum of the

i’th lepton. The |J�P
G| is the Jacobian associated with the

twelve dimensional change of variables from ~XG ! ~PG

in the di�erential volume element. The |J�P
R| arises from

the change of variables ~XR ! ~PR in the transfer function
(remembering T ( ~XR| ~XG) is treated as a function of ~XR)
which we loosely also refer to as a Jacobian, as we will do
for all subsequent change of variables to follow. Ideally
to find these Jacobian factors one should construct the
12�12 matrix associated with these transformations and
then calculate the determinant, but this is untenable an-
alytically since it must be constructed for each point in
phase space. We therefore implement a straightforward
numerical algorithm to calculate these factors for each
phase space point. This procedure is described in detail
and validated in [36].

Since we make the assumption that detector smear-
ing will only a�ect the component of the lepton momen-
tum parallel to the direction (pi||) of motion and not the
two components perpendicular to the direction of mo-
tion (~pi�) (which are zero at generator level) we find it
convenient to decompose the lepton three momenta ~pi

in terms of pi|| and ~pi�. Note that this assumption is
equivalent to assuming angular resolution e�ects due to

Note: Not done by MC integration ) done via C.O.V. and numerical techniques

T (~XR |~XG ) represents probability to observe ~
X

R given ~
X

G

Can be optimized for specific detector and included in convolution
This integration takes us from generator level observables (~XG ) to
detector level (reconstructed) observables (~XR)
Conceptually simple, but requires a number of steps to perform (and
massive computing) details in arXiv:1401.2077 and technical note to appear soon

We have performed this 12-D convolution for signal and background
Roberto Vega-Morales (LPT) Extracting Higgs Couplings CERN: Sept, 5 2014 6 / 16



The 6D Fit at Detector Level: ~A
o

= (0, 0, 0, 0, 0, 0)

We perform same‘toy’ 6D fit as in generator (signal only) case
Includes detector as well as (most) background and production effects

Detector Level Fits: Error Projections For SM Point

Rough'projec*ons'

•  All'ra*os'are'fimed'simultaneously'

Oct.'11,'2013' Yi'Chen'@'HZZ'Mee*ng' 15'

Disclaimer:'systema*cs'not'included'

ggZZ/ZX'parts'needs'to'be'finalized!'

Absolute'scale'is'

related'to'the'pure'

term'cross'sec*on.'

Will'be'clearer'

once'we'convert'

to'fa3Glike'quan*tes'

Very'preliminary!'

(Y. Chen, E. DiMarco, J. Lykken, M. Spiropulu, RVM, S. Xie: Preliminary)
Roberto Vega-Morales (LPT) Golden Obsessions LPT-Orsay: October 2013 45 / 59

We see very similar sensitivity to ‘generator level’ analysis
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Framework in CMS Analysis: CMS PAS HIG-14-014

Used in recent CMS study of anomalous hVV couplings in h ! 4`
20 6 Results
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Figure 4: Expected and observed likelihood scans for fa2(left) and fa3(right) obtained using the
kinematic discriminant method (KD, black) and multidimensional distribution method (MD,
red). The likelihoods are computed assuming the a2/a1 and a3/a1 coupling ratios are real.

coverage is expected in the asymptotic limit [89].

For the scans shown in Figure 5a the likelihood is computed from the kinematic discriminant
method assuming ��1 is 0 or � and all other amplitudes have their SM values. Here the dis-
crimination is based on three-dimensional probability density functions (Dbkg, D�1, D0h+). The
fit finds (expects) the best fit points at f�1 cos(��1) = 0.22+0.10

�0.16(0.00+0.16
�0.87) when the phase is 0

or �, f�1 = 0.22+0.10
�0.16(0.00+0.16

�0.00) when ��1 = 0, and f�1 = 0.00+0.08
�0.00(0.00+0.87

�0.00) when ��1 = �.
In Figure 5b ��1 is profiled while all other parameters are set to the SM predictions or a second
ZZ amplitude and its phase �ai are profiled along with ��1 ( fa2, �a2 or fa3, �a3). The fits find
(expect) the best fit points to be at f�1 = 0.35+0.15

�0.29(0.00+0.87
�0.00) when profiling ��1. Furthermore,

f�1 = 0.28+0.20
�0.15(0.00+0.87

�0.00) when profiling ��1, fa2, and �a2 and f�1 = 0.42+0.10
�0.33(0.00+0.88

�0.00) when
profiling ��1, fa3, and �a3. In this case the likelihood is computed from the kinematic discrimi-
nant method only and the discrimination power is based on the three-dimensional probability
density functions (Dbkg, D�1, D0� or D0h+).

For the scans shown in Figure 5c the likelihood is computed from the kinematic discriminant
method assuming the a2/a1 amplitude ratio is real and all other amplitudes have their SM
values. Here the likelihood is based on three-dimensional probability density functions (Dbkg,
D0h+, Dint). The best fit values when the amplitude ratio is real, �a2 = 0 or � are reported
above. In Figure 5d �a2 is profiled while all other parameters are set to the SM predictions or a
second ZZ amplitude and its phase �ai are profiled along with �a2 ( f�1,��1 or fa3,�a3). The fits
find (expect) the best fit points to be at fa2 = 0.32+0.28

�0.32(0.00+0.59
�0.00) when profiling �a2. Further-

more, fa2 = 0.11+0.16
�0.11(0.00+0.73

�0.00) when profiling �a2, f�1, and ��1 and fa2 = 0.28+0.29
�0.28(0.00+0.59

�0.00)
when profiling �a2, fa3, and �a3. In this case the likelihood is computed from the Kinematic
Discriminant Method only and the discrimination power is based on the three-dimensional
probability density functions (Dbkg, D0h+, D0� or D�1).

For the scans shown in Figure 5e the likelihood is computed from the kinematic discriminant
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Figure 4: Expected and observed likelihood scans for fa2(left) and fa3(right) obtained using the
kinematic discriminant method (KD, black) and multidimensional distribution method (MD,
red). The likelihoods are computed assuming the a2/a1 and a3/a1 coupling ratios are real.

coverage is expected in the asymptotic limit [89].

For the scans shown in Figure 5a the likelihood is computed from the kinematic discriminant
method assuming ��1 is 0 or � and all other amplitudes have their SM values. Here the dis-
crimination is based on three-dimensional probability density functions (Dbkg, D�1, D0h+). The
fit finds (expects) the best fit points at f�1 cos(��1) = 0.22+0.10

�0.16(0.00+0.16
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�0.00) when ��1 = 0, and f�1 = 0.00+0.08
�0.00(0.00+0.87

�0.00) when ��1 = �.
In Figure 5b ��1 is profiled while all other parameters are set to the SM predictions or a second
ZZ amplitude and its phase �ai are profiled along with ��1 ( fa2, �a2 or fa3, �a3). The fits find
(expect) the best fit points to be at f�1 = 0.35+0.15

�0.29(0.00+0.87
�0.00) when profiling ��1. Furthermore,
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�0.00) when
profiling ��1, fa3, and �a3. In this case the likelihood is computed from the kinematic discrimi-
nant method only and the discrimination power is based on the three-dimensional probability
density functions (Dbkg, D�1, D0� or D0h+).

For the scans shown in Figure 5c the likelihood is computed from the kinematic discriminant
method assuming the a2/a1 amplitude ratio is real and all other amplitudes have their SM
values. Here the likelihood is based on three-dimensional probability density functions (Dbkg,
D0h+, Dint). The best fit values when the amplitude ratio is real, �a2 = 0 or � are reported
above. In Figure 5d �a2 is profiled while all other parameters are set to the SM predictions or a
second ZZ amplitude and its phase �ai are profiled along with �a2 ( f�1,��1 or fa3,�a3). The fits
find (expect) the best fit points to be at fa2 = 0.32+0.28

�0.32(0.00+0.59
�0.00) when profiling �a2. Further-
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Figure 7: The observed 2D likelihood scan for fa2 vs fa3 fractions, obtained using the kinematic
discriminant method (KD, black) and multidimensional distribution method (MD, red). The
likelihoods are computed assuming the a2/a1 and a3/a1 coupling ratios are real.

alternative signal hypotheses are taken to be the same as for the SM Higgs boson (the 2e2µ
channel is taken as a reference). Since the observed signal strength is very close to unity, the
two results for the expected separations are also similar.

In case of the spin-one studies, we have performed hypothesis testing for a discrete set of val-
ues for parameter fb2. The distribution of test statistic and observed value in the case of the SM
Higgs boson versus an example spin-one hypothesis with mixture fb2=0.8 using decay only
information are shown in Figure 9 (left). The expected and observed separations from the test
statistic distributions are summarized in Table 8 and in Figure 10. Figure 9 (right) shows a like-
lihood scan of �2� ln L as a function of f (JP), in case of the qq̄ production mode. The expected
and observed non-interfering fraction measurements are also summarized in Table 8, as well as
in Figure 11. In case of production independent scenarios the f (JP) results are extracted using
the efficiency of qq ! X. All the results are consistent with the expected SM contribution to
the signal.

In case of the spin-two studies, we have computed the test statistics and performed hypothesis
testing for all models and discriminants discussed in Section 5.2.2. The following terms are
tested here for the first time; c2(2+

h2), c3(2+
h3), c6(2+

h6), c7(2+
h7), c9(2�

h9), c10(2�
h10). Previous CMS

results tested c1 = c5(2+
m) in all three production scenarios, as well as c1 << c5(2+

b ), c4(2+
h ) and

c7(2�
h ) terms from gg production [10]. This analysis tests both qq̄ and production independent

scenarios for these three untested cases. The results presented here and previous CMS results
cover all lowest order terms in the amplitude when we do not consider mixing of these spin-
two scenarios.

The example distribution of test statistic and observed value in the case of the SM Higgs boson
versus the spin-two hypothesis any ! 2�

h10 are shown in Figure 12 (left). Figure 12(right)
shows the likelihood scan of the spin-two hypotheses as a function of f (JP), in the decay only
discriminant case.

Used in a limited scope so as validate with other other frameworks
Performance in these cases was found to be similar
Can begin utilizing full power of framework in future studies
A simultaneous extraction of all effective Higgs couplings!
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Summary

Can use h ! 4` to extract Higgs couplings to ZZ , Z�, and ��

For anomalous couplings strongest sensitivity will be for ��

We have built a complete framework which can extract all couplings
simultaneously and at ‘detector level’ in short computing time
Independent of parametrization and easily adapted to whichever
parametrization is most convenient at a given time
Also can be used to search for other NP like exotic Higgs decays
Framework is also easily adapted to h ! 2`� and h ! ��
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THANKS!

For more information see:
Y. Chen, N. Tran, RVM: arXiv:1211.1959,
Y. Chen, RVM: arXiv:1310.2893,
Y. Chen, E. DiMarco, J. Lykken, M. Spiropulu, RVM, S. Xie: arXiv:1401.2077,
Y. Chen, R. Harnick, RVM: arXiv:1404.1336,
CMS Collaboration: CMS PAS HIG-14-014
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The Full PDF

We need a function for the ‘production’ spectrum to form full pdf

4

of Hermitian operators,

L � 1

4v
h
�
2ghm2

ZZµZµ + gZZµ�Zµ� + g̃ZZµ� �Zµ�

+ 2gZ�Fµ�Zµ� + 2g̃Z�Fµ� �Zµ�

+ g�Fµ�Fµ� + g̃�Fµ� �Fµ�

�
, (2)

where we have taken h real and allowed only up to di-
mension five operators and Zµ is the Z field while Vµ� =
�µV� ���Vµ is the usual bosonic field strengths. The dual

field strengths are defined as �Vµ� = 1
2�µ���V ��. Thus for

this Lagrangian we would have all couplings real with
AZZ

1 � gh, AZZ
2 � gZ , AZZ

3 � g̃Z and similarly for Z�
and ��. This makes Eq.(1) a convenient parametrization
for fitting to Lagrangian parameters that might be gen-
erated in various models at dimension five or less. For a
purely Standard Model Higgs we have AZZ

1 � gh = 2,
while all other coe�cients are � 0. The parameteriza-
tion in Eq.(1) can of course be mapped onto Lagrangians
with dimension greater than five with appropriate trans-
lation of the parameters. We work explicitly with the
vertex in Eq.(1) used to calculate the fully di�erential
cross section for h ! 4` and when performing parameter
extraction, but again this can easily be changed in our
framework. We also define the full set of parameters as,

~A � (AZZ
1 , AZZ

2 , AZZ
3 ; AZ�

2 , AZ�
3 ; A��

2 , A��
3 ), (3)

which will be used for the remainder of this study.

C. Signal and Background
Di�erential Cross Sections

In the case of signal we have computed analytically the
fully di�erential cross section in the observables described
in Sec.IIA for the process h ! ZZ + Z� + �� ! 4`
using the parametrization in Eq.(1). We have included all
possible interference e�ects between tensor structures as
well as identical final states in the case of 4e/4µ. For the
irreducible background we have computed analytically
the process qq̄ ! ZZ +Z� +�� ! 4` which includes the
s-channel (resonant) 4` process as well as the t-channel
(diboson production) 4` process and again includes all
possible interference e�ects. All vector bosons are allowed
to be on or o�-shell and we do not distinguish between
them in what follows. The details of these calculations
can be found in [19, 35, 36] along with the validation
procedures and detailed studies of the distributions as
well as the various interference e�ects. We have combined
these analytic expressions with functions parametrizing
the production spectra and implemented them into our
analysis framework.

We note that it is important to include all possible
Higgs couplings including the Z� and �� contributions
in the signal di�erential cross section since the Higgs ap-
pears to be mostly Standard Model-like [40] and we are
primarily searching for small anomalous deviations from

the Standard Model prediction. Thus when attempting to
extract specific couplings we must be sure that one small
e�ect is not being mistaken for another. This is particu-
larly relevant because we find many of the couplings are
correlated. Including all possible couplings and doing a
simultaneous fit ensures that we minimize the possibility
of misinterpretation or of introducing a bias when at-
tempting to extract these couplings. Searching for these
small e�ects is also why it is important to include the in-
terference e�ects between the identical final state leptons
as well as the relevant detector e�ects and background.

III. CONSTRUCTION OF THE PDF

To be able to perform a fit for the e�ective Higgs cou-
plings, we must first obtain the probability density func-
tion (pdf ) for the observables as a function of the unde-
termined parameters ( ~A). This pdf consists of two com-
ponents which we assume to be factorized: the parton
level (‘decay’) di�erential cross section as discussed in
Section II C, and the production spectrum. This can be
expressed as,

P (~pT , Y, �, ŝ, M1, M2, ~�| ~A) = (4)

Wprod(~pT , Y, �, ŝ) � d�4�(ŝ, M1, M2, ~�| ~A)

dM2
1 dM2

2 d~�
.

The parton level fully di�erential cross section is treated
as being at fixed ŝ where one obtains the input ŝ value
from the production spectrum Wprod. The production
spectrum for the signal and background depend on the
parton distribution functions and can not be computed
analytically. For the signal in which we assume decays
on-shell, the ŝ spectrum is taken to be a delta function
centered at m2

h. We discuss in more detail how Wprod is
obtained for the signal and background in Sec. III D.

We explicitly assume that the decay process can be
factorized from the production mechanism and as men-
tioned previously will eventually average over ~pT , Y and
�. Of course the expression in Eq.(4) represents the gen-
erator level pdf, while a realistic treatment involves the
pdf after taking into account detector e�ects. We study
this in more detail below and discuss the basic proce-
dure for obtaining the detector level pdf via an explicit
integration over all of the center of mass variables. The
particular details of the various steps as well as a number
of validations can be found in an accompanying technical
note [36].

A. Obtaining pdf in Terms of Detector Observables

A realistic treatment of the signal and background re-
quires obtaining the pdfs in terms of detector level ob-
servables. This can be done by a convolution of the gen-
erator level pdf introduced in Eq.(4) with a transfer func-
tion which parametrizes the e�ects of the lepton selec-

Note decay part treated at fixed ŝ

For signal W

prod

includes NLO gg ! h process (can include VBF)
For BG NLO qq̄ ! 4`, gg ! 4`, qg , qq̄ ! 4` + j (and Z + X )
Of course W

prod

also includes parton distribution functions
Several options for obtaining W

prod

:
I Compute as much analytically as possible
I Can construct ‘analytic parametrizations’ of W

prod

I Use ‘look up’ tables and boost events accordingly
I A ‘hybrid method’ of these approaches

Since we ultimately fit to ratios of parameters and average over
(~p

T

, Y , �), analysis largely insensitive to ‘production effects’
Enters mainly as an acceptance effect due to detector

Roberto Vega-Morales (LPT) Extracting Higgs Couplings CERN: Sept, 5 2014 12 / 16



Constructing a Maximum Likelihood Analysis

A likelihood can be formed out of probability density functions (pdfs)
using some set of observables as follows
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to. Furthermore, for a specific model one can take the predic-
tion for the values of the various couplings and simply multi-
ply by the numbers given in Fig. 4-5 to get a feel for whether
those couplings might be probed in the golden channel. For
most realistic models, all couplings apart from A1ZZ are gen-
erated by higher dimensional operators and are expected to
be small. Of course, these rates do not contain information
about the shapes in the various distributions so in principal
the sensitivity is greater than might be inferred from these
values. In Sec. VII A of the Appendix we also show the same
partial fractions for a ‘CMS-like’ phase space as well as show
the same tables for the standard model prediction. Of course
for a scalar resonance with a mass much larger or smaller than
125 GeV these numbers can change significantly.

B. Simplified Analysis

In order to demonstrate the flexibility and potential of our
framework, we perform a simplified generator level analy-
sis neglecting any detector e�ects and at a fixed center of
mass energy of

�
s = m� = 125 GeV . To do this we con-

struct a maximum likelihood analysis using the fully di�er-
ential cross sections in Eqs.(19) and (49) to build the signal
plus background pdf from which the total likelihood will be
constructed. Thus we have,

PS+B(O|FB , �A) = FB � PB(ŝ, M1, M2, ��) (50)

+(1 � FB) � PS(m2
h, M1, M2, ��|��)

where O = (ŝ, M1, M2, ��) is our final set of observables and f
is the background fraction, which we must also extract. The
signal and background pdfs are given by,

PS(m2
h, M1, M2, ��|��) =

d�h�4�

dM2
1 dM2

2 d��

PB(ŝ, M1, M2, ��) =
d�qq̄�4�

dM2
1 dM2

2 d��
, (51)

where they have been normalized over O (at fixed
�

s). With
the pdfs in hand we can now write the likelihood of obtaining
a particular data set containing N events as,

L( �A) =
N�

O

P(O| �A) (52)

After constructing L(f,��) we then maximize with respect to

f and �� to extract the values which maximize the likelihood
�̂ and f̂ for a given data set. To asses the error we then re-
peat this for a large number of pseudo experiments to obtain
distributions for �̂ and f̂ with a corresponding spread. Below
we show the results for an example parameter point. More
details on this procedure can be found in [30] and [31].

C. Fit Definition

To examine the Higgs couplings to neutral gauge bosons,
we take as our hypothesis the vertex in Eq.(1). We can use an
overall phase rotation to make one of the parameters real. Fur-
thermore, we can avoid the need for the absolute normaliza-
tion if we instead fit to ratios of couplings. Which parameter

to make real and which ratios to construct explicitly is a mat-
ter of choice the most convenient of which depends on the fit
being performed. Thus, in terms of the vertex as defined in
Eqs.(2), we are explicitly fitting to,

�µ�
ij (k, k�) � Rij

1 V µ�
1 + Rij

2 V µ�
2 + Rij

3 V µ�
3 (53)

where Rij
n are complex ratios defined as Rij

n = Anij/|A| where
|A| is some normalization to be chosen for each fit. Since one
of the Rij

n can always be made real there are in principal
twelve undetermined parameters to fit for when neglecting
the overall normalization (note RZ�

1 = R��
1 = 0). Fitting to

ratios also makes any dependence on the production variables,
�pT and Y minimal since they mainly only a�ect selection ef-
ficiencies when detector e�ects are eventually included [30].

D. Example Parameter Extraction

As a demonstration of our ability to perform parameter
extraction, we analyze the following example parameter point:

• �� � (A1ZZ = 1, A2ZZ = 0, A3ZZ = 5.1, A2Z� =
0.05, A3Z� = �0.1, A2�� = 0.07, A3�� = �0.08).

Note that even though A2ZZ is zero we still fit for it and there-
fore it is floated when performing the maximization. Thus we
allow for all operators in Eq.(3) to be ‘turned on’ simultane-
ously, but we assume all coe�cients to be real. Our framework
can easily also allow for non-zero phases, but we do not con-
sider them here for simplicity. The pseudo-data set to which
we fit is obtained by generating large samples from the an-
alytic expressions using a simply constructed event genera-
tor5. We generate both signal and background events at fixed
energy

�
s = 125 GeV and M1,2 > 4 GeV . Since we seek

only to demonstrate the validity of our parameter extraction
framework, we focus on the 2e2µ final state for simplicity. It
would be interesting, however, to perform a dedicated study
and examine how the sensitivity of the 2e2µ final state com-
pares to the 4e/4µ final state for di�erent choices of phase
space, but we leave this for future work. The parameter ex-
traction is performed by maximizing the likelihood function
as described above.

We first perform a simultaneous extraction of all param-
eters including the correlations assuming a pure signal sam-
ple. We show in Fig. 6 one dimensional results for a large set
of pseudo experiments containing 1000 events each. We have
explicitly fit to the ratios of couplings Rij

n = Anij/|A| where
here we take |A| = |A1ZZ | (thus fixing RZZ

1 = 1). The dis-
tribution for the extracted parameters obtained for the set of
pseudo experiments is shown in blue with the true value indi-
cated by the red vertical line. One can see that the true value
sits near the center of the distribution, an indication that
the maximization procedure is working properly and that the
global maximum of the likelihood function is in fact being
obtained in each pseudo experiment. The e�ciency of con-
vergence in our maximization is � 99% and takes on the order
of a few minutes to complete [31].

Of course there are also correlations between the param-
eters. To see this we can examine the di�erent parameters

5 The event generator can be obtained from [38].

(where O is set of observables and ~
A a set of undetermined parameters)

P(O|~A) built out of fully differential cross section for observables
The pdf takes in the set observables O as its input
L(~A) is a function of undetermined parameters and represents
the likelihood for observing a given data set (N events of O)
With this one can go on to do direct parameter extraction of ~

A
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Parameter Extraction From Maximum Likelihood

This is done by maximizing the likelihood with respect to ~
A
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give one important example, we generate pdfs with nar-
rower or wider lepton response functions to parameterize
our knowledge of the lepton momentum resolution. If we
define the nominal pdf to be P0(O) and the alternative
as P1(O), one can parameterize the dependence of the
likelihood on a nuisance parameter n by interpolating
between the nominal and the alternative pdfs as follows:

P(O|n) = (1 � n) P0(O) + n P1(O)

= P0(O) + n [P1(O) � P0(O)] . (27)

It is instructive to observe that, for all values of n, the
normalization of the total pdf stays the same. Given the
asymmetric nature of many systematic uncertainties, it is
more appropriate to generate many “check-points” along
the axis of n and to do piece-wise interpolation with-
out the need of worrying about the normalization. Non-
central values of n are a priori disfavored, therefore one
can impose a prior on top of the interpolated likelihood:

P(O|n) = P(O|n)G(n), (28)

where G(n) is typically a Gaussian centered at the central
value of n. In the case of multiple systematic uncertain-
ties, one can replace n by a vector of nuisance parameters
~n, and the prior G(n) by G(~n). In general G(~n) is a mul-
tivariate Gaussian-like function with primary axes which
are some combination of di�erent nuisance parameter di-
rections. However one can carefully define the nuisance
parameters such that correlations between them are neg-
ligible. In this limit G(~n) can be written as the product
of many Gaussian-like functions.

In this paper, we have included the dominant system-
atic uncertainties resulting from imperfect knowledge of
the lepton momentum scale and resolution. Future work
will incorporate a more exhaustive list of systematic un-
certainties, including those resulting from uncertainties
in the production spectra, uncertainties in the Higgs
boson mass, and uncertainties on sub-dominant back-
grounds.

V. FIT AND STATISTICAL PROCEDURE

Here we discuss the maximization procedure used to
extract the undetermined parameters and the use of
pseudo experiments to quantify the uncertainty as well as
present our fit definition. To perform the maximization
of the likelihood we have incorporated the MINUIT [49]
function minimization code into our framework. Further
details of these procedures can be found in [36].

A. Maximization Procedure

One important feature of the procedure is that the
computationally intensive component of evaluating the
likelihood only needs to be done for the events in the final
dataset used in the fit for a given experiment. Therefore

the computationally expensive pieces can be calculated
on the computing grid prior to the analysis of the data,
and the fit for parameter extraction itself is then com-
pleted within a few seconds. This allows for a great deal
of flexibility when fitting the undetermined parameters.

Once the likelihood L( ~A) for a particular dataset is
obtained, a simple maximization procedure to find the
global maximum is performed to obtain the value of
the parameters which maximizes the likelihood, Â. Thus
Â represents the most likely value of ~A for a given
dataset. Schematically we have,

�L( ~A)

� ~A

���
�A=Â

= 0. (29)

To quantify the uncertainty on the extracted value Â we
perform a large number of pseudo-experiments N each
containing N events and perform the maximization for
each pseudo-experiment. A distribution for Â is obtained
with a spread � and average value Ā. The true value Ao

will sit within some interval of the extracted value Â for
a given pseudo experiment and as the number of pseudo
experiments is taken to infinity the average value of Â will
converge to the true value; i.e. Ā ! Ao as N ! 1. The
results to be shown in Sec. VI represent a rough esti-
mate of the final precision of the analysis, while a precise
quantification of the measurement precision including all
sub-dominant backgrounds and systematic uncertainties
are left to an ongoing study [37].

B. Finding the Global Maximum

In practice the maximization in Eq.(29) is done by
a simple scan of the likelihood function starting from
some random initial point in the parameter space. Of
particular importance in this step is ensuring that the
point in parameter space that this procedure converges
to is actually the global maximum and not simply a local
maximum, as the statistical fluctuations of a particular
dataset can lead to the appearance of multiple local max-
ima in the likelihood. This can lead to biases or imprecise
estimations of the undetermined parameters.

We illustrate this e�ect in Fig. 8 where we show ‘arrow
plots’ for an example two-dimensional fit to two di�erent
datasets containing the same number of events and same
‘true’ value for the undetermined parameters. We show a
large number of arrows whose tails begin at some initial
point in a two dimensional parameter space and whose
heads point to the final point reached in the maximiza-
tion scan. On the left we see the same endpoint is reached
regardless of the initial starting point indicating there is
a clear global maximum. On the right we see two separate
accumulations to which the arrow heads point indicating
two local maxima. We have carefully accounted for this
e�ect in our maximization procedure and find a very high
convergence rate in general (� 99%) to the global maxi-
mum of the likelihood. More details of this procedure can
be found in [36].

For a given data set of N events Â gives the value of the parameter
which maximizes the likelihood OR the most likely value of ~

A

To estimate error repeat for a large set of N pseudo-experiments and
obtain a distribution for Â with a given spread and average value Ā

The true value ~
A

o

will sit in some interval around Ā

In the limit as N ! 1 one will find Ā ! ~
A

o

Conceptually straightforward, but technically challenging...
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Summary of Framework for Parameter Extraction

Extracting of Effective Higgs Couplings in Golden Channel

Obtain analytic generator level pdf P(~XG |~A) (i.e. fully diff cxn)
Perform convolution with transfer function over 12 CM variables

5

tion e�ciency and the imperfect momentum measure-
ment resolution of the detector. This can be represented
schematically as follows,

P ( ~XR| ~A) =

�
P ( ~XG| ~A)T ( ~XR| ~XG)d ~XG. (5)

Here we take ~X to represent the full set of center of
mass variables, including production and the flat o�-
set angle �, as ~X � (~pT , Y, �, ŝ, M1, M2, ~�). The trans-
fer function T ( ~XR| ~XG) is loosely based on the approxi-
mate performance of the CMS detector. It takes us from
generator (G) level to reconstructed (R) (detector level)
observables and is described in more detail in the Ap-
pendix. It represents the probability of reconstructing the
observables ~XR given the generator level observable ~XG

and is treated as a function of ~XR which takes ~XG as
input. The set of variables ~X exhausts the twelve de-
grees of freedom (note that ~pT has 2 components and
~� contains 5 angles) available to the four (massless) final
state leptons. The di�erential volume element is given by
d ~X = dŝdM2

1 dM2
2 d~� · d~pT dY d�. Upon integration over

all ~XG variables one obtains a pdf which encapsulates
the relevant detector e�ects.

The integral in Eq.(5) is the main result of this pa-
per and we emphasize that it has not been obtained
via Monte Carlo methods. Instead we have explicitly
performed the integration by utilizing various change
of variables and well-established numerical techniques
(see [31, 41–43] for new studies that perform similar
convolutions using Monte Carlo methods). This ensures
that (arbitrarily) high precision is maintained at each
step, producing what is e�ectively an ‘analytic function’
in terms of detector level variables once the convolu-
tion has been performed. After averaging over the pro-
duction variables (~pT , Y, �), this allows us to ultimately
construct a complete unbinned detector level likelihood,
which utilizes the full set of eight reconstructed decay
observables and is a continuous function of the e�ec-
tive couplings. Having the detector level likelihood as a
continuous function of all the e�ective Higgs couplings
allows us to easily perform multi-parameter extraction
with great speed and flexibility as was done at genera-
tor level [35]. By obtaining the 8-dimensional detector
level likelihood explicitly we avoid the need to fill large
multi-dimensional templates that require an impractical
amount of computing time; we also thus avoid the collat-
eral binning and often ‘smoothing’ side-e�ects.

While conceptually simple the convolution integral is
operationally challenging and in fact is most easily done
with a di�erent set of variables than those in the cen-
ter of mass frame. Since this step is crucial for perform-
ing the convolution we describe below an overview of
the necessary change of variables. The explicit details
of these transformations and their validations are given
in [36]. We note for now that the manner in which the
qq̄ ! 4` and h ! 4` expressions are calculated, as a sum
of the individual contributions [19, 35], makes the con-

volution feasible since one can perform the integration
on each smaller piece and then simply sum the separate
contributions. This is much more practical to do com-
putationally than to integrate the entire expressions at
once.

B. Changing Variables for Background pdf

We first discuss the construction of the background
detector level pdf and continue with the construction of
the signal as there is a subtle di�erence between these
two cases. Since there are no undetermined parameters in
the background the generator- and detector-level pdfs are
given simply by PB( ~XG) and PB( ~XR) respectively. In or-
der to perform the convolution with the transfer function
we first transform to a more convenient set of variables
in which the detector smearing is parametrized before
performing the integration.

To begin, we transform from the twelve center of mass
variables to the three momentum for the four final state
leptons. This can be represented as follows,

PB( ~XR) =

�
PB( ~XG)T ( ~XR| ~XG)d ~XG

=

�
PB( ~XG)T (~PR|~PG)

|J�P
G|

|J�P
R|

d~PG, (6)

where the di�erential volume element is now given by,

d~PG =
4�

i=1

d~p G
i , (7)

and ~p G
i is the generator level three momentum of the

i’th lepton. The |J�P
G| is the Jacobian associated with the

twelve dimensional change of variables from ~XG ! ~PG

in the di�erential volume element. The |J�P
R| arises from

the change of variables ~XR ! ~PR in the transfer function
(remembering T ( ~XR| ~XG) is treated as a function of ~XR)
which we loosely also refer to as a Jacobian, as we will do
for all subsequent change of variables to follow. Ideally
to find these Jacobian factors one should construct the
12�12 matrix associated with these transformations and
then calculate the determinant, but this is untenable an-
alytically since it must be constructed for each point in
phase space. We therefore implement a straightforward
numerical algorithm to calculate these factors for each
phase space point. This procedure is described in detail
and validated in [36].

Since we make the assumption that detector smear-
ing will only a�ect the component of the lepton momen-
tum parallel to the direction (pi||) of motion and not the
two components perpendicular to the direction of mo-
tion (~pi�) (which are zero at generator level) we find it
convenient to decompose the lepton three momenta ~pi

in terms of pi|| and ~pi�. Note that this assumption is
equivalent to assuming angular resolution e�ects due to

Normalize over ~
X

R ; build detector level likelihood as function of ~
A
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to. Furthermore, for a specific model one can take the predic-
tion for the values of the various couplings and simply multi-
ply by the numbers given in Fig. 4-5 to get a feel for whether
those couplings might be probed in the golden channel. For
most realistic models, all couplings apart from A1ZZ are gen-
erated by higher dimensional operators and are expected to
be small. Of course, these rates do not contain information
about the shapes in the various distributions so in principal
the sensitivity is greater than might be inferred from these
values. In Sec. VII A of the Appendix we also show the same
partial fractions for a ‘CMS-like’ phase space as well as show
the same tables for the standard model prediction. Of course
for a scalar resonance with a mass much larger or smaller than
125 GeV these numbers can change significantly.

B. Simplified Analysis

In order to demonstrate the flexibility and potential of our
framework, we perform a simplified generator level analy-
sis neglecting any detector e�ects and at a fixed center of
mass energy of

�
s = m� = 125 GeV . To do this we con-

struct a maximum likelihood analysis using the fully di�er-
ential cross sections in Eqs.(19) and (49) to build the signal
plus background pdf from which the total likelihood will be
constructed. Thus we have,

PS+B(O|FB , �A) = FB � PB(ŝ, M1, M2, ��) (50)

+(1 � FB) � PS(m2
h, M1, M2, ��|��)

where O = (ŝ, M1, M2, ��) is our final set of observables and f
is the background fraction, which we must also extract. The
signal and background pdfs are given by,

PS(m2
h, M1, M2, ��|��) =

d�h�4�

dM2
1 dM2

2 d��

PB(ŝ, M1, M2, ��) =
d�qq̄�4�

dM2
1 dM2

2 d��
, (51)

where they have been normalized over O (at fixed
�

s). With
the pdfs in hand we can now write the likelihood of obtaining
a particular data set containing N events as,

L( �A) =
N�

�XR

P( �XR| �A) (52)

After constructing L(f,��) we then maximize with respect to

f and �� to extract the values which maximize the likelihood
�̂ and f̂ for a given data set. To asses the error we then re-
peat this for a large number of pseudo experiments to obtain
distributions for �̂ and f̂ with a corresponding spread. Below
we show the results for an example parameter point. More
details on this procedure can be found in [30] and [31].

C. Fit Definition

To examine the Higgs couplings to neutral gauge bosons,
we take as our hypothesis the vertex in Eq.(1). We can use an
overall phase rotation to make one of the parameters real. Fur-
thermore, we can avoid the need for the absolute normaliza-
tion if we instead fit to ratios of couplings. Which parameter

to make real and which ratios to construct explicitly is a mat-
ter of choice the most convenient of which depends on the fit
being performed. Thus, in terms of the vertex as defined in
Eqs.(2), we are explicitly fitting to,

�µ�
ij (k, k�) � Rij

1 V µ�
1 + Rij

2 V µ�
2 + Rij

3 V µ�
3 (53)

where Rij
n are complex ratios defined as Rij

n = Anij/|A| where
|A| is some normalization to be chosen for each fit. Since one
of the Rij

n can always be made real there are in principal
twelve undetermined parameters to fit for when neglecting
the overall normalization (note RZ�

1 = R��
1 = 0). Fitting to

ratios also makes any dependence on the production variables,
�pT and Y minimal since they mainly only a�ect selection ef-
ficiencies when detector e�ects are eventually included [30].

D. Example Parameter Extraction

As a demonstration of our ability to perform parameter
extraction, we analyze the following example parameter point:

• �� � (A1ZZ = 1, A2ZZ = 0, A3ZZ = 5.1, A2Z� =
0.05, A3Z� = �0.1, A2�� = 0.07, A3�� = �0.08).

Note that even though A2ZZ is zero we still fit for it and there-
fore it is floated when performing the maximization. Thus we
allow for all operators in Eq.(3) to be ‘turned on’ simultane-
ously, but we assume all coe�cients to be real. Our framework
can easily also allow for non-zero phases, but we do not con-
sider them here for simplicity. The pseudo-data set to which
we fit is obtained by generating large samples from the an-
alytic expressions using a simply constructed event genera-
tor5. We generate both signal and background events at fixed
energy

�
s = 125 GeV and M1,2 > 4 GeV . Since we seek

only to demonstrate the validity of our parameter extraction
framework, we focus on the 2e2µ final state for simplicity. It
would be interesting, however, to perform a dedicated study
and examine how the sensitivity of the 2e2µ final state com-
pares to the 4e/4µ final state for di�erent choices of phase
space, but we leave this for future work. The parameter ex-
traction is performed by maximizing the likelihood function
as described above.

We first perform a simultaneous extraction of all param-
eters including the correlations assuming a pure signal sam-
ple. We show in Fig. 6 one dimensional results for a large set
of pseudo experiments containing 1000 events each. We have
explicitly fit to the ratios of couplings Rij

n = Anij/|A| where
here we take |A| = |A1ZZ | (thus fixing RZZ

1 = 1). The dis-
tribution for the extracted parameters obtained for the set of
pseudo experiments is shown in blue with the true value indi-
cated by the red vertical line. One can see that the true value
sits near the center of the distribution, an indication that
the maximization procedure is working properly and that the
global maximum of the likelihood function is in fact being
obtained in each pseudo experiment. The e�ciency of con-
vergence in our maximization is � 99% and takes on the order
of a few minutes to complete [31].

Of course there are also correlations between the param-
eters. To see this we can examine the di�erent parameters

5 The event generator can be obtained from [38].

Maximize likelihood with respect to undetermined parameters
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give one important example, we generate pdfs with nar-
rower or wider lepton response functions to parameterize
our knowledge of the lepton momentum resolution. If we
define the nominal pdf to be P0(O) and the alternative
as P1(O), one can parameterize the dependence of the
likelihood on a nuisance parameter n by interpolating
between the nominal and the alternative pdfs as follows:

P(O|n) = (1 � n) P0(O) + n P1(O)

= P0(O) + n [P1(O) � P0(O)] . (27)

It is instructive to observe that, for all values of n, the
normalization of the total pdf stays the same. Given the
asymmetric nature of many systematic uncertainties, it is
more appropriate to generate many “check-points” along
the axis of n and to do piece-wise interpolation with-
out the need of worrying about the normalization. Non-
central values of n are a priori disfavored, therefore one
can impose a prior on top of the interpolated likelihood:

P(O|n) = P(O|n)G(n), (28)

where G(n) is typically a Gaussian centered at the central
value of n. In the case of multiple systematic uncertain-
ties, one can replace n by a vector of nuisance parameters
~n, and the prior G(n) by G(~n). In general G(~n) is a mul-
tivariate Gaussian-like function with primary axes which
are some combination of di�erent nuisance parameter di-
rections. However one can carefully define the nuisance
parameters such that correlations between them are neg-
ligible. In this limit G(~n) can be written as the product
of many Gaussian-like functions.

In this paper, we have included the dominant system-
atic uncertainties resulting from imperfect knowledge of
the lepton momentum scale and resolution. Future work
will incorporate a more exhaustive list of systematic un-
certainties, including those resulting from uncertainties
in the production spectra, uncertainties in the Higgs
boson mass, and uncertainties on sub-dominant back-
grounds.

V. FIT AND STATISTICAL PROCEDURE

Here we discuss the maximization procedure used to
extract the undetermined parameters and the use of
pseudo experiments to quantify the uncertainty as well as
present our fit definition. To perform the maximization
of the likelihood we have incorporated the MINUIT [49]
function minimization code into our framework. Further
details of these procedures can be found in [36].

A. Maximization Procedure

One important feature of the procedure is that the
computationally intensive component of evaluating the
likelihood only needs to be done for the events in the final
dataset used in the fit for a given experiment. Therefore

the computationally expensive pieces can be calculated
on the computing grid prior to the analysis of the data,
and the fit for parameter extraction itself is then com-
pleted within a few seconds. This allows for a great deal
of flexibility when fitting the undetermined parameters.

Once the likelihood L( ~A) for a particular dataset is
obtained, a simple maximization procedure to find the
global maximum is performed to obtain the value of
the parameters which maximizes the likelihood, Â. Thus
Â represents the most likely value of ~A for a given
dataset. Schematically we have,

�L( ~A)

� ~A

���
�A=Â

= 0. (29)

To quantify the uncertainty on the extracted value Â we
perform a large number of pseudo-experiments N each
containing N events and perform the maximization for
each pseudo-experiment. A distribution for Â is obtained
with a spread � and average value Ā. The true value Ao

will sit within some interval of the extracted value Â for
a given pseudo experiment and as the number of pseudo
experiments is taken to infinity the average value of Â will
converge to the true value; i.e. Ā ! Ao as N ! 1. The
results to be shown in Sec. VI represent a rough esti-
mate of the final precision of the analysis, while a precise
quantification of the measurement precision including all
sub-dominant backgrounds and systematic uncertainties
are left to an ongoing study [37].

B. Finding the Global Maximum

In practice the maximization in Eq.(29) is done by
a simple scan of the likelihood function starting from
some random initial point in the parameter space. Of
particular importance in this step is ensuring that the
point in parameter space that this procedure converges
to is actually the global maximum and not simply a local
maximum, as the statistical fluctuations of a particular
dataset can lead to the appearance of multiple local max-
ima in the likelihood. This can lead to biases or imprecise
estimations of the undetermined parameters.

We illustrate this e�ect in Fig. 8 where we show ‘arrow
plots’ for an example two-dimensional fit to two di�erent
datasets containing the same number of events and same
‘true’ value for the undetermined parameters. We show a
large number of arrows whose tails begin at some initial
point in a two dimensional parameter space and whose
heads point to the final point reached in the maximiza-
tion scan. On the left we see the same endpoint is reached
regardless of the initial starting point indicating there is
a clear global maximum. On the right we see two separate
accumulations to which the arrow heads point indicating
two local maxima. We have carefully accounted for this
e�ect in our maximization procedure and find a very high
convergence rate in general (� 99%) to the global maxi-
mum of the likelihood. More details of this procedure can
be found in [36].

Obtain Â for data set of N observables ) Extract Higgs couplings
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Advantages of Framework for Parameter Extraction

Speed, Stability, and Precision:
I Because final likelihood is an ‘analytic’ (simple quadratic) function of

parameters ~
A, once likelihood is built, parameter fitting extremely fast

I Even for large number of events or multi-dimensional parameter fits
I Maximum of the likelihood is always found with very high convergence

rate (> 99%) ) accurate and precise extraction of parameters
Flexibility and Generality:

I One can easily perform any combination of parameter fits desired
I Trivial to perform reparametrizations of parameters for more intuitive

interpretation or to avoid degeneracies in parameter space
I Allows us to account for potential correlations between parameters
I Can incorporate different transfer functions to include detector effects
I Easy to include other exotic Higgs interactions, i.e. Z

0
s, VLLs, etc.

Intuitiveness and Transparency of Physics:
I Conceptually straightforward: we simply maximize the likelihood, no

hypothesis testing or construction of descriminants
I Interpretation of physics is straightforward and transparent

Likelihood is (mostly) un-binned and uses all 8 decay observables!
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