
Adding bridges to

ROOT
Bianca-Cristina Cristescu

Contents

• Working plan

• Bridges “built”

• Software development model

• Launching with ROOT6

Working plan

• Build up the connection between ROOT and Cling: Reflection

• End-user features

 => Build up some bridges

ROOT

Cling

End user

• No stand-alone, big, fat task, but “on-demand” tasks

and the always pilling up Jira issues:

Bridges built

• ROOT - Experiments bridge

• ROOT - Cling bridge

• ROOT - End User bridge

• PCM reproducers to Clang

ROOT - Experiments bridge

• Implemented features available in Reflex, but not in ROOT 6

(enum reflection, attributes = reflex selection properties)

• Implemented features in the past provided by each

experiment: GetMissingDictionaries

• Implemented features not there (enums-on-demand,

TFunctionTemplate)

• Extended existing features: offset calculation

List of missing dictionaries

• Feature to allow knowledge about the missing

dictionaries of a class to facilitate the generation of the

missing ones easily

• Important feature for CMS

• Again at the middleware between TClass* objects and

Clang we have to determine using clang::Decls which

are the classes within our TClass that have missing

dictionaries

• Fun complications with (Subst)TemplateParmTypeType

GetMissingDictionaries

• Atypical recursion model with many different behaviour

cases:

Level 1

Level 2

Level 3 Level 4

Virtual base offset

 Multiple inheritance

 Virtual base class

• Non-virtual multiple inheritance cases use Clang AST

information and the multiple paths error cases are

handled

• Virtual base cases: conversion compiled and executed at

runtime

• Cast-to-derived versus Cast-to-base: long time bug in

reflex

Virtual base offset

 Getting the offset:

 -> non-virtual base case

 -> look up the offset in the cache

 -> else if offset can be computed

 -> store compiler calculated offset

 -> virtual base case

 -> look up the offset calculation *function* and execute it

 -> else -> generate the *function* to calculate the offset

 -> execute the wrapper and store the *function* for

 future calls.

Since the function has to be re-run for every object, caching the *function*

is reducing significantly the cost

ROOT - Cling bridge

• Preprocessor Macro error recovery and printing

• Unloading on ROOT’s side

• Value Extraction Synthesiser

Preprocessor Macro error recovery and printing

• Important feature/requirement of the interpreter graceful

recovery from errors

• MacroDeclQueue has been added in order to keep track

of the preprocessor macros that have to be unrolled in

case of error

• Contents need to be removed from caches and all the

dependencies connected to it have to be updated as well

• To check the correctness of Cling’s state after recovery

the structure of the preprocessor macro was made

printable

Unloading on ROOT’s side

• ROOT's reflection data needs to be informed about

unloaded objects

• ROOT's reflection data is persistent: unload means

invalidate

 root [0] TGlobal* g;

 root [1] int i

 (int) 0

 root [2] g = (TGlobal*)gROOT->GetListOfGlobals()->FindObject("i")

 (class TGlobal *) 0x7f8c7400da60

 root [3] .undo 2

 root [4] g->IsValid()

 (Bool_t) false

ROOT - End User bridge

• Output redirection

• Tab completion

• Printing of const array chars

Output redirection

• Redirection was implemented by adding another

command symbol to Cling’s grammar .>

• Having a RAI structure in the interpreter enabled the

redirection command to support multiple levels of

nesting

.> /tmp/redirectoutput.txt

.2> /tmp/redirecterror.txt

.&> /tmp/bothfile.txt

.> /tmp/redirect1.txt

.> /tmp/redirect2.txt

.>

.>

Tab Completion

• Pointless to explain what is tab completion and especially why

we need it! (for the people in the room and remote)

• Changed tab completion to the structure and features of ROOT

6

root [0] gROOT->

AddClass

AddClassGenerator

Browse

Class

ClassSaved

Class_Name

Class_Version

CloseFiles

ConvertVersionCode2Int

ConvertVersionInt2Code

Value extraction synthesiser

e.g

root [0] std::string sarr[3] = {"A", "B", "C"}

(std::string [3]) { @0x7f92b8713b20 c_str: "A", @0x7f92b8713b38 c_str: "B",

@0x7f92b8713b50 c_str: "C" }

PCM bugs reproducers

• In order to be able to build root with PCM modules,

Clang standalone has to work

• Submitted 5 bugs to Clang, 1 got fixed already

Software development model

• Agile Development: requirements and solutions evolve through

collaboration between self-organising, cross-functional teams. It

promotes adaptive planning, evolutionary development, early delivery,

continuous improvement and encourages rapid and flexible response to

change.

• Scrum: "a flexible, holistic product development strategy where a

development team works as a unit to reach a common goal", challenges

assumptions of the "traditional, sequential approach" to product

development, and enables teams to self-organise by encouraging

physical co-location or close online collaboration of all team members,

as well as daily face-to-face communication among all team members

and disciplines in the project.

http://en.wikipedia.org/wiki/Cross-functional_team
http://en.wikipedia.org/wiki/Cross-functional_team
http://en.wikipedia.org/wiki/Cross-functional_team
http://en.wikipedia.org/wiki/Holism

Software development model

Although Scrum as part of Agile methods gets quite close

to what we did, we had a characteristic way of working:

Our software development method:
• an extension to Scrum where we would have very often (3-4 times a

week) Skype meetings and discussed our tasks, found ideas, buried

ideas, built test cases, got unstuck. More importantly in this way I could

get a informal review on my work

• Send a pull request to Axel’s repository; that was the second level of

reviewing my patches which enabled me to pick up the coding style and

the conventions of the project more easily; this also enabled Philippe to

review my patches too

• Like a bouncing ball the work was always turn on different sides and it

got polished

Launching with ROOT6

• Usually students finish their projects and they leave

before seeing the part that they worked on being used

• Lucky person to see my work being used e.g tab com

• ROOT6 launched and helping students to upgrade to

ROOT6 and seeing posters being made using it

• As this was my first full time job my launching

 in the world as well..

After

Clearer, still exciting!

Thank you!

Before

“Vague, but exciting!”

Mike Sendall

