
Gaudi Components for Concurrency

Marco Clemencic, Daniel Funke, Benedikt Hegner,
Pere Mato, Danilo Piparo and Illya Shapoval

CERN PH-SFT / KIT ITI

ACAT 2014

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 1/23

Classical Data Processing Frameworks

Algorithm 1 Algorithm 2 Algorithm 3

Tool A Tool B

Service I Service II

Data Store

I Algorithm:
I consumes and produces data

objects from/to data store
I steers further processing

depending on data
I Tool:

I computation that can be re-used
by several algorithms

I may consume and produce data
objects

I Service:
I provide fundamental framework

functionality to all algorithms and
tools

I is managed by the context of the
framework

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 2/23

Classical Data Processing Frameworks (contd.)

I were designed for sequential processing
I benefited from steadily increasing CPU clock speeds

However, in recent years
I clock speeds have stopped increasing
I amount of collected physics data still does
I with higher collision energies, processing time per event increases

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 3/23

Addressing the Challenge

One job per core does not scale:
I limited memory amount/bandwidth
I particularly for many-cores not feasible

Instead, fine-level parallelism needs to be exploited
I inter-event: one process handles several events in parallel
I intra-event: executing independent algorithms within one event concurrently
I intra-algorithm: simultaneous processing of many physical objects

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 4/23

Addressing the Challenge

One job per core does not scale:
I limited memory amount/bandwidth
I particularly for many-cores not feasible

Instead, fine-level parallelism needs to be exploited
I inter-event: one process handles several events in parallel
I intra-event: executing independent algorithms within one event concurrently
I intra-algorithm: simultaneous processing of many physical objects

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 4/23

The Gaudi Framework

Converter

Algorithm

Event Data
Service

Persistency
Service

AlgorithmAlgorithm

Transient
Event Store

Detec. Data
Service

Persistency
Service

Transient
Detector
Store

Message
Service

J obOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram
Store

Application
Manager

Converter
ConverterEvent

Selector

Data
Files

Data
Files

[6]

I generic data processing framework
I provides clear interfaces
I easily extendable and adaptable to

experiments
I used by LHCb, ATLAS, FCC,

HARP, Fermi, . . .

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 5/23

The Concurrent Gaudi Project

Goal: enable inter- and intra-event-level parallelism in the Gaudi framework

Milestones:
Nov. 2012: I parallel demonstrator using simulated workloads [IEE NSS 1]

Oct. 2013:
Rel. v0.5

I parallel execution of LHCb VELO reconstruction [CHEP 2,3]

now
Rel. v0.6

I evolved workarounds to production quality solutions

I added features essential for parallel scheduling

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 6/23

Gaudi Components for Concurrency

[2]

I events processed in loop and handed
over to scheduler

I scheduler acquires algorithm
instances from pool and submits
them to Intel TBB runtime

I each concurrently processed event
has a dedicated slot in the
whiteboard (multi-slot event store)
to retrieve/store data items

Additional components for:
I concurrent message logging
I shared resource protection
I timeline of multi-threaded algorithm execution

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 7/23

Scheduling

Sequential Gaudi:
I algorithms are arranged in sequences
I each algorithm produces binary decision that may:
I sequences can be composed
I algorithms can be part of several sequences

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 8/23

I set decision of sequence
(AND/OR)

I early return of sequence

Scheduling (contd.)
Concurrent Gaudi:

I the control-flow is extracted from the sequences
I executability of remaining algorithms is updated with every algorithm decision
I lazily evaluated sequences limit potential for parallelism
⇒ optimistic execution should be preferred

A1 A2 ∨

∧

A3 A4

...

¬

Example
Assuming an early return AND-sequence,
if A1 produces false, A2 . . . A4 not required to executed

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 9/23

Scheduling (contd.)
Concurrent Gaudi:

I the control-flow is extracted from the sequences
I executability of remaining algorithms is updated with every algorithm decision
I lazily evaluated sequences limit potential for parallelism
⇒ optimistic execution should be preferred

A1 A2 ∨

∧

A3 A4

...

¬

Example
Assuming an early return AND-sequence,
if A1 produces false, A2 . . . A4 not required to executed

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 9/23

Scheduling (contd.)

Algorithms require and produce data objects

I establishes data flow between algorithms
I data flow implicitly contained in control flow structure of sequential Gaudi

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 10/23

Unifying Control and Data Flow

Concurrent Gaudi:
I data dependencies need to be explicitly stated
I control and data flow can be expressed in a unified graph

I graph contains algorithm, data and decision nodes
I two edge types for control flow and data dependencies

I information for scheduler about parallelizable flows within the sequence

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 11/23

Unifying Control and Data Flow

brunel2012magdown workflow

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 12/23

Unifying Control and Data Flow

Graph analysis can yield insights on the execution flow:
I unfulfillable data dependencies of algorithms

unreachable data node connected to algorithm
I superfluous control flow constructs

paths of decision nodes of in-degree = out-degree = 1
I critical paths and maximal concurrency level
I priorities for algorithm execution

out-degree of node

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 13/23

Declaring Data Dependencies

All interaction with data store must be made through data handles
I smart pointers that properly register read/written data object with framework
I thus, allow automatic deduction of data dependencies between algorithms

Data handles provide:
I declaration syntax familiar to Gaudi developers
I transparent use of alternative locations for a data object
I customization of properties in configuration file

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 14/23

File: raw.root
/Event/DAQ/RawEvent

File: reco.root
/Event/Reco/RawEvent

Handle

primary locationsecondary location

Declaring Data Dependencies (contd.)

Data handles provide locking mechanism for update operations

Caveats:
I only truly thread-safe if:

I update operation is commutative
I no other mutable data is used for update

e.g. updates depending on another status
I performance penalty to pay

Updating data objects poses non-trivial problems to non-deterministic execution
⇒ just re-ordering of sequences might have unexpected effects

Ideal: everything in the data store is const

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 15/23

Declaring Data Dependencies (contd.)

Data handles provide locking mechanism for update operations

Caveats:
I only truly thread-safe if:

I update operation is commutative
I no other mutable data is used for update

e.g. updates depending on another status
I performance penalty to pay

Updating data objects poses non-trivial problems to non-deterministic execution
⇒ just re-ordering of sequences might have unexpected effects

Ideal: everything in the data store is const

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 15/23

Declaring Tools

Algorithms may use
private tool owned by algorithm exclusively
public tool owned by framework, shared by several algorithms

Interaction with tools via tool handles provides:
I automatic propagation of tools in- and output to algorithm
I declaration syntax familiar to Gaudi developers
I optional configurability of private tools in configuration file

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 16/23

Algorithm1

Tool1
i1
i2
i3

o1

o2

Context-aware Data Access

With concurrently processed events, event-specific data must
a) be stored in the data store

I thread-safe and context-aware
I event-context transparently set by framework through thread local index

b) use Gaudi’s context-aware smart pointer
I smart pointer de-references to object associated with processed event
I thread local index set by framework

thread_local int eventContext

smart pointer

de-reference

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 17/23

Muli-threaded Message Logging

Logging to std::cout is not thread-safe:
I interleaved output from different threads
I corrupted output buffer

TBBMessageSvc resides in own thread:
I output messages buffered in thread-safe queue
I no interleaving, order of messages preserved
I drop-in replacement for MessageSvc
I can be used in sequential mode to offload logging

T
h
r
e
a
d

1

T
h
r
e
a
d

2

T
h
r
e
a
d

n

...

Thread-safe
FIFO queue

std::cout

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 18/23

Adoption by Existing Experiments

Concurrent features do not interfere with production sequences
⇒ sequential Gaudi can run unaltered

I data and tool handles can be gradually adopted algorithm by algorithm
⇒ advantage of execution graph analysis even without concurrent processing
e.g. identification of inconsistencies, superfluous algorithms, . . .

I existing functionalities of the framework were instrumented to ease migration
I classical tool retrieval method via tool<T>(...) method

⇒ properly registers tool usage with parent algorithm/tool
for automatic dependency propagation

I transparent use of context-aware smart pointer

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 19/23

Adoption by Existing Experiments (contd.)

However, parallel processing does not come for free!

Some things need to be re-[implemented, designed]:
I use of caches within algorithms and tools
I thread-unsafe updates to data objects in the data store
I abuse of public tools for back-channel communication
I . . .

Again, incremental approach:
I revise algorithms one at a time
I enable parallel processing workflow by workflow

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 20/23

Adoption by Existing Experiments (contd.)

However, parallel processing does not come for free!

Some things need to be re-[implemented, designed]:
I use of caches within algorithms and tools
I thread-unsafe updates to data objects in the data store
I abuse of public tools for back-channel communication
I . . .

Again, incremental approach:
I revise algorithms one at a time
I enable parallel processing workflow by workflow

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 20/23

Example already a problem now

Algorithm1 Evil Tool Algorithm2

data m_result

calcResult(i1)

getResult()

i1i1

implicit dependency between Algorithm1 and Algorithm2
⇒ can not be automatically deduced by framework

Adoption by Existing Experiments (contd.)

However, parallel processing does not come for free!

Some things need to be re-[implemented, designed]:
I use of caches within algorithms and tools
I thread-unsafe updates to data objects in the data store
I abuse of public tools for back-channel communication
I . . .

Again, incremental approach:
I revise algorithms one at a time
I enable parallel processing workflow by workflow

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 20/23

Adoption by LHCb

Decision taken to merge concurrency components into production Gaudi
I gradual adaption of data and tool handles
I immediate benefit of static configuration checking
I paving the road to go parallel

I user feedback will help to distill further best practices for adoption

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 21/23

Future Circular Collider

FCC develops new experiment software based on Gaudi
I design with concurrency in mind

I algorithms access data store only via data handles
I tools are declared at configuration time
I data store is used for algorithms’ intermediate results
I services are re-entrant or context-aware
I const-correctness is enforced

I challenge of integrating external packages in thread-safe manner

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 22/23

Summary and Outlook

Features developed in Concurrent Gaudi Project are ready to be used
by existing and future experiments [5]

Existing experiments
I can apply incremental adoption strategy
I immediately benefit from static configuration checking
I pave the road to go parallel

Further developments:
I support adaption of concurrency by experiments
I leverage asynchronous writes to the data store
I explore use of accelerators

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 23/23

References

1. P. Mato, Evolving LHC Data Processing Frameworks for Efficient
Exploitation of New CPU Architectures, IEEE NSS 2012, November

2. D.Piparo, Preparing HEP Software for Concurrency - Lessons learned from
the Concurrent Gaudi Project, CHEP 2013, October

3. B. Hegner, Introducing Concurrency in the Gaudi Data Processing
Framework, CHEP 2013, October

4. Concurrency for HEP Twiki:
https://twiki.cern.ch/twiki/bin/view/C4Hep/WebHome

5. Gaudi Hive git repository:
git clone −b dev/hive http://cern.ch/gaudi/GaudiMC.git

6. Barrand G. et al., GAUDI - A software architecture and framework for
building LHCb data processing applications, CHEP 2000

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 24/23

https://twiki.cern.ch/twiki/bin/view/C4Hep/WebHome

Backup

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 25/23

Declaring Data Dependencies
Use data handles to access data store from algorithms and tools:

Code
c l a s s MyAlgorithm : p u b l i c G a u d i A l g o r i t h m{

p r i v a t e :
DataObjectHandle<LHCb : : Tracks> m t r a c k s ;
DataObjectHandle<LHCb : : Tracks> m f i l t e r e d T r a c k s ;

p u b l i c :
MyAlgorithm (. . .) : G a u d i A l g o r i t h m (. . .) {

d e c l a r e I n p u t (” Tracks ” , m tracks ,
LHCb : : T r a c k L o c a t i o n : : D e f a u l t) ;

d e c l a r e O u t p u t (” F i l t e r e d T r a c k s ” , m f i l t e r e d T r a c k s ,
” A n a l y s i s / F i l t e r e d T r a c k s ”) ;

}

v o i d e x e c u t e () {
LHCb : : Tracks ∗ t r a c k s = m t r a c k s . g e t () ;

}
} ;

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 26/23

Declaring Data Dependencies – Examples
Code: Python configurability
myAlg = MyAlgorithm (’ A n a l y s i s F i l t e r ’)
myAlg . I n p u t s . Tracks . Path = ’ Skim/ Tracks ’ # use pre− f i l t e r e d t r a c k s

Code: DataObjectHandle interface
template<typename T>
c l a s s DataObjectHandle : p u b l i c MinimalDataObjectHandle {

. . .
boo l e x i s t () ;
T∗ g e t () ;
T∗ g e t I f E x i s t s () ;
T∗ g e t O r C r e a t e () ;
v o i d put (T∗ o b j e c t) ;

v o i d l o c k () ;
v o i d u n l o c k () ;

}

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 27/23

Data Dependencies – Concurrency Features

Locking mechanisms for “thread-safe” access to data objects

Code: DataObjectHandle interface
v o i d MyAlgorithm : : u p d a t e S t a t u s (const S t a t u s & s t a t u s){

m s t a t u s . l o c k () ;

G l o b a l S t a t u s ∗ g S t a t u s = m s t a t u s . g e t O r C r e a t e () ;
i f (! g S t a t u s . c o n t a i n s (s t a t u s . key ()){

gStatus−>i n s e r t (s t a t u s) ;
} e l s e {

gStatus−>update (s t a t u s) ;
}

m s t a t u s . u n l o c k () ;
}

⇒ transitional migration tool, many caveats involved

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 28/23

Declaring Tools

Declare tools used by algorithm at configuration time:

Code
c l a s s MyAlgorithm : p u b l i c G a u d i A l g o r i t h m{

p r i v a t e :
ToolHandle<I T r a c k E x t r a p o l a t o r> m e x t r a p o l a t o r ;
ToolHandle<I M a t e r i a l L o c a t o r > m m a t e r i a l L o c a t o r ;

p u b l i c :
MyAlgorithm (. . .) : G a u d i A l g o r i t h m (. . .) {

d e c l a r e P r i v a t e T o o l (m e x t r a p o l a t o r , ” T r a c k L i n e a r E x t r a p o l a t o r ”) ;
// o p t i o n a l l y make i t a p r o p e r t y
d e c l a r e P r o p e r t y (” T r a c k E x t r a p o l a t o r ” , m e x t r a p o l a t o r) ;

d e c l a r e P u b l i c T o o l (m m a t e r i a l L o c a t o r , ” D e t a i l e d M a t e r i a l L o c a t o r ”) ;
}

} ;

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 29/23

Declaring Tools - Example

Code: Python configurability
myAlg = MyAlgorithm (’ A n a l y s i s F i l t e r ’)
myAlg . T r a c k E x t r a p o l a t o r . I t e r a t i o n s = 1 # rough e s t i m a t e

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 30/23

Scheduling

Different scheduling strategies transparently available:
I Parallel Sequential mimic multi-process approach
⇒ but with reduced memory footprint

multi-process multi-thread

context specific state

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 31/23

Scheduling

Different scheduling strategies transparently available:
I Parallel Sequential mimic multi-process approach
⇒ but with reduced memory footprint

I Forward schedule executable (control-flow) algorithms
as soon as their input becomes available (data-flow)

Only forward scheduler exploits intra-event parallelism

[2]

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 32/23

Scheduling

Different scheduling strategies transparently available:
I Parallel Sequential mimic multi-process approach
⇒ but with reduced memory footprint

I Forward schedule executable (control-flow) algorithms
as soon as their input becomes available (data-flow)

Only forward scheduler exploits intra-event parallelism

Future plans:
I backward schedule only algorithms required to produce final result
I use accelerators: bunch up events to make load-off profitable

Daniel Funke – Gaudi Components for Concurrency 2014-09-XX 32/23

	Appendix

