Gaudi Components for Concurrency
Marco Clemencic, Daniel Funke, Benedikt Hegner,
Pere Mato, Danilo Piparo and lllya Shapoval

CERN PH-SFT / KIT ITI

ACAT 2014

—
/RW Daniel Funke — Gaudi Components for Concurrency 2014-09-XX

Classical Data Processing Frameworks

» Algorithm:
» consumes and produces data
objects from/to data store
> steers further processing
depending on data

| Service | | | Service Il |
» Tool:
@ —><— » computation that can be re-used
by several algorithms
| Algorithm 1)—){ Algorithm 2)—»{ Algorithm 3 | > ma_y consume and produce data
T l T l T l objects
[Data Store | » Service:

» provide fundamental framework
functionality to all algorithms and
tools

> is managed by the context of the
framework

Daniel Funke — Gaudi Components for Concurrency

Classical Data Processing Frameworks (contd.)

» were designed for sequential processing
> benefited from steadily increasing CPU clock speeds

However, in recent years
> clock speeds have stopped increasing
» amount of collected physics data still does

» with higher collision energies, processing time per event increases

Daniel Funke — Gaudi Components for Concurrency 2014-09-XX

Addressing the Challenge

One job per core does not scale:
> limited memory amount/bandwidth

» particularly for many-cores not feasible

Instead, fine-level parallelism needs to be exploited
» inter-event: one process handles several events in parallel
> intra-event: executing independent algorithms within one event concurrently

» intra-algorithm: simultaneous processing of many physical objects

Daniel Funke — Gaudi Components for Concurrency

Addressing the Challenge

One job per core does not scale:
> limited memory amount/bandwidth

» particularly for many-cores not feasible

Instead, fine-level parallelism needs to be exploited
» inter-event: one process handles several events in parallel
» intra-event: executing independent algorithms within one event concurrently

» intra-algorithm: simultaneous processing of many physical objects

Daniel Funke — Gaudi Components for Concurrency

The Gaudi Framework

Transient
Event Store

Particle Prop.
Service

Daniel Funke — Gaudi Components for Concurrency

» generic data processing framework

provides clear interfaces

» easily extendable and adaptable to

experiments

used by LHCb, ATLAS, FCC,
HARP, Fermi, ...

The Concurrent Gaudi Project

Goal: enable inter- and intra-event-level parallelism in the Gaudi framework

Milestones:
Nov. 2012: » parallel demonstrator using simulated workloads pee nss 1

Oct. 2013: » parallel execution of LHCb VELO reconstruction (cxep 23
Rel. v0.5
now » evolved workarounds to production quality solutions

Rel. v0.6 . .
» added features essential for parallel scheduling

Daniel Funke — Gaudi Components for Concurrency

Gaudi Components for Concurrency

S ‘ » events processed in loop and handed

T over to scheduler
: |‘_" - » scheduler acquires algorithm
Q_.I ‘ i instances from pool and submits

g

Ji | AA them to Intel TBB runtime
} B) J &N » each concurrently processed event

j K oo has a dedicated slot in the
=) whiteboard (multi-slot event store)

2] to retrieve/store data items

Additional components for:
> concurrent message logging
» shared resource protection

» timeline of multi-threaded algorithm execution

Daniel Funke — Gaudi Components for Concurrency

Scheduling

oo

fomsa iwu o / /

D \
AR N e | i

v \ v .
azsep | oz \ et | vttt \

CotTOm

Sequential Gaudi:
» algorithms are arranged in sequences
» each algorithm produces binary decision that may: » set decision of sequence
> sequences can be composed (AND/OR)
» algorithms can be part of several sequences > early return of sequence

Daniel Funke — Gaudi Components for Concurrency

Scheduling (contd.)
Concurrent Gaudi:
» the control-flow is extracted from the sequences
> executability of remaining algorithms is updated with every algorithm decision

» lazily evaluated sequences limit potential for parallelism
= optimistic execution should be preferred

Daniel Funke — Gaudi Components for Concurrency

Scheduling (contd.)
Concurrent Gaudi:
» the control-flow is extracted from the sequences
» executability of remaining algorithms is updated with every algorithm decision

» lazily evaluated sequences limit potential for parallelism
= optimistic execution should be preferred

Assuming an early return AND-sequence,
if A1 produces false, A;...A; not required to executed

Daniel Funke — Gaudi Components for Concurrency

Scheduling (contd.)

Algorithms require and produce data objects

» establishes data flow between algorithms

» data flow implicitly contained in control flow structure of sequential Gaudi

Daniel Funke — Gaudi Components for Concurrency

Unifying Control and Data Flow

Concurrent Gaudi:
» data dependencies need to be explicitly stated

» control and data flow can be expressed in a unified graph

» graph contains algorithm, data and decision nodes
> two edge types for control flow and data dependencies

» information for scheduler about parallelizable flows within the sequence

Daniel Funke — Gaudi Components for Concurrency

Unifying Control and Data Flow

brunel2012magdown workflow

aniel Funke — Gaudi Components for Concurrency 2014-09-XX

Unifying Control and Data Flow

Graph analysis can yield insights on the execution flow:

» unfulfillable data dependencies of algorithms
unreachable data node connected to algorithm

» superfluous control flow constructs
paths of decision nodes of in-degree = out-degree = 1

» critical paths and maximal concurrency level

> priorities for algorithm execution
out-degree of node

Daniel Funke — Gaudi Components for Concurrency

Declaring Data Dependencies

All interaction with data store must be made through data handles

> smart pointers that properly register read/written data object with framework

» thus, allow automatic deduction of data dependencies between algorithms

Data handles provide:
» declaration syntax familiar to Gaudi developers
» transparent use of alternative locations for a data object

» customization of properties in configuration file

File: raw.root File: reco.root

/Event /DAQ/RawEvent /Event /Reco/RawEvent

A . K .
i secondary location primary location

Daniel Funke — Gaudi Components for Concurrency

Declaring Data Dependencies (contd.)

Data handles provide locking mechanism for update operations

Caveats:
» only truly thread-safe if:

» update operation is commutative
» no other mutable data is used for update
e.g. updates depending on another status

» performance penalty to pay

Daniel Funke — Gaudi Components for Concurrency

Declaring Data Dependencies (contd.)

Data handles provide locking mechanism for update operations

Caveats:
» only truly thread-safe if:

» update operation is commutative
» no other mutable data is used for update
e.g. updates depending on another status

» performance penalty to pay

Updating data objects poses non-trivial problems to non-deterministic execution
= just re-ordering of sequences might have unexpected effects

Ideal: everything in the data store is const

Daniel Funke — Gaudi Components for Concurrency

Declaring Tools

Algorithms may use
private tool owned by algorithm exclusively
public tool owned by framework, shared by several algorithms

Interaction with tools via tool handles provides:
» automatic propagation of tools in- and output to algorithm
» declaration syntax familiar to Gaudi developers

» optional configurability of private tools in configuration file

Algorithm,

i— Toal,

Daniel Funke — Gaudi Components for Concurrency

Context-aware Data Access

With concurrently processed events, event-specific data must
a) be stored in the data store

> thread-safe and context-aware
> event-context transparently set by framework through thread local index

b) use Gaudi's context-aware smart pointer

» smart pointer de-references to object associated with processed event
» thread local index set by framework

==

CERN
\W Daniel Funke — Gaudi Components for Concurrency

Muli-threaded Message Logging

Logging to std: : cout is not thread-safe:
» interleaved output from different threads
» corrupted output buffer

TBBMessageSvc resides in own thread:

Thread-safe
FIFO queue

» output messages buffered in thread-safe queue
» no interleaving, order of messages preserved
» drop-in replacement for MessageSvc

> can be used in sequential mode to offload logging

std::cout

Daniel Funke — Gaudi Components for Concurrency

Adoption by Existing Experiments

Concurrent features do not interfere with production sequences
= sequential Gaudi can run unaltered

» data and tool handles can be gradually adopted algorithm by algorithm
= advantage of execution graph analysis even without concurrent processing
e.g. identification of inconsistencies, superfluous algorithms, ...
» existing functionalities of the framework were instrumented to ease migration
» classical tool retrieval method via tool<T>(...) method
= properly registers tool usage with parent algorithm /tool
for automatic dependency propagation
> transparent use of context-aware smart pointer

Daniel Funke — Gaudi Components for Concurrency

Adoption by Existing Experiments (contd.)

However, parallel processing does not come for free!
Some things need to be re-[implemented, designed]:
» use of caches within algorithms and tools
» thread-unsafe updates to data objects in the data store

» abuse of public tools for back-channel communication
L

Daniel Funke — Gaudi Components for Concurrency

2014-09-XX

Adoption by Existing Experiments (contd.)

However, parallel processing does not come for free!

Some things need to be re-[implemented, designed]:

Algorithm, Evil Tool Algorithm,

calcResult(i,)
getResult()

data m_result

implicit dependency between Algorithm; and Algorithm,
= can not be automatically deduced by framework

Daniel Funke — Gaudi Components for Concurrency 2014-09-XX

Adoption by Existing Experiments (contd.)

However, parallel processing does not come for free!
Some things need to be re-[implemented, designed]:

use of caches within algorithms and tools

>

> thread-unsafe updates to data objects in the data store
» abuse of public tools for back-channel communication
>

Again, incremental approach:
> revise algorithms one at a time

» enable parallel processing workflow by workflow

Daniel Funke — Gaudi Components for Concurrency

2014-09-XX

Adoption by LHCb

Decision taken to merge concurrency components into production Gaudi
» gradual adaption of data and tool handles
» immediate benefit of static configuration checking
> paving the road to go parallel

v

user feedback will help to distill further best practices for adoption

Daniel Funke — Gaudi Components for Concurrency

Future Circular Collider

FCC develops new experiment software based on Gaudi

» design with concurrency in mind

> algorithms access data store only via data handles
tools are declared at configuration time
data store is used for algorithms’ intermediate results
services are re-entrant or context-aware
const-correctness is enforced

vvyVvVvyy

» challenge of integrating external packages in thread-safe manner

o~
CER

RN
\W Daniel Funke — Gaudi Components for Concurrency

Summary and Outlook

Features developed in Concurrent Gaudi Project are ready to be used
by existing and future experiments

Existing experiments
» can apply incremental adoption strategy

» immediately benefit from static configuration checking
» pave the road to go parallel

Further developments:

» support adaption of concurrency by experiments
> leverage asynchronous writes to the data store

> explore use of accelerators

Daniel Funke — Gaudi Components for Concurrency

References

1. P. Mato, Evolving LHC Data Processing Frameworks for Efficient
Exploitation of New CPU Architectures, IEEE NSS 2012, November

2. D.Piparo, Preparing HEP Software for Concurrency - Lessons learned from
the Concurrent Gaudi Project, CHEP 2013, October

3. B. Hegner, Introducing Concurrency in the Gaudi Data Processing
Framework, CHEP 2013, October

4. Concurrency for HEP Twiki:
https://twiki.cern.ch/twiki/bin/view/C4Hep/WebHome

5. Gaudi Hive git repository:
git clone —b dev/hive http://cern.ch/gaudi/GaudiMC.git

6. Barrand G. et al., GAUDI - A software architecture and framework for
building LHCb data processing applications, CHEP 2000

—
/RW Daniel Funke — Gaudi Components for Concurrency 2014-09-XX

https://twiki.cern.ch/twiki/bin/view/C4Hep/WebHome

Backup

Daniel Funke — Gaudi Components for Concurrency 2014-09-XX

Declaring Data Dependencies

Use data handles to access data store from algorithms and tools:

class MyAlgorithm : public GaudiAlgorithm {

private :
DataObjectHandle<LHCb:: Tracks> m_tracks;
DataObjectHandle<LHCb:: Tracks> m_filteredTracks;

public:
MyAlgorithm(...) : GaudiAlgorithm(...) {
declarelnput(”Tracks”, m_tracks ,
LHCb:: TrackLocation :: Default);
declareOutput (" FilteredTracks”, m_filteredTracks ,
"Analysis/FilteredTracks”);

}

void execute () {
LHCb:: Tracks % tracks = m_tracks.get();

Daniel Funke — Gaudi Components for Concurrency

Declaring Data Dependencies — Examples

Code: Python configurability

myAlg = MyAlgorithm (' AnalysisFilter ")
myAlg. Inputs. Tracks.Path = 'Skim/Tracks' # use pre—filtered tracks

Code: DataObjectHandle interface

template<typename T>
class DataObjectHandle : public MinimalDataObjectHandle {

bool exist ();

T+ get();

T+ getlfExists ();

T+ getOrCreate();
void put (Tx object);

void lock ();
void unlock ();

Daniel Funke — Gaudi Components for Concurrency 2014-09-XX

Data Dependencies — Concurrency Features

Locking mechanisms for “thread-safe” access to data objects

Code: DataObjectHandle interface

void MyAlgorithm :: updateStatus(const Status & status){
m_status.lock ();
GlobalStatus* gStatus = m_status.getOrCreate ();
if (! gStatus.contains(status.key()){
gStatus—>insert (status);

} else {

gStatus—>update(status);

m_status.unlock ();

= transitional migration tool, many caveats involved

Daniel Funke — Gaudi Components for Concurrency 2014-09-XX

Declaring Tools

Declare tools used by algorithm at configuration time:

class MyAlgorithm : public GaudiAlgorithm{

private :
ToolHandle<ITrackExtrapolator> m_extrapolator;
ToolHandle<IMaterialLocator> m_materialLocator;
public:
MyAlgorithm(...) : GaudiAlgorithm(...)
declarePrivateTool (m_extrapolator, "TrackLinearExtrapolator”);
// optionally make it a property
declareProperty (" TrackExtrapolator”, m_extrapolator);
declarePublicTool (m_materialLocator, "DetailedMaterialLocator”);
}
I

aniel Funke — Gaudi Components for Concurrency

Declaring Tools - Example

Code: Python configurability

myAlg = MyAlgorithm (' AnalysisFilter ')
myAlg. TrackExtrapolator.lterations = 1 # rough estimate

Daniel Funke — Gaudi Components for Concurrency 2014-09-XX

Scheduling

Different scheduling strategies transparently available:

» Parallel Sequential mimic multi-process approach
= but with reduced memory footprint

multi-process multi-thread

context specific state

Daniel Funke — Gaudi Components for Concurrency

Scheduling

Different scheduling strategies transparently available:

» Parallel Sequential mimic multi-process approach
= but with reduced memory footprint

» Forward schedule executable (control-flow) algorithms
as soon as their input becomes available (data-flow)

Only forward scheduler exploits intra-event parallelism

Daniel Funke — Gaudi Components for Concurrency

Scheduling

Different scheduling strategies transparently available:

» Parallel Sequential mimic multi-process approach
= but with reduced memory footprint

» Forward schedule executable (control-flow) algorithms
as soon as their input becomes available (data-flow)
Only forward scheduler exploits intra-event parallelism

Future plans:
» backward schedule only algorithms required to produce final result

» use accelerators: bunch up events to make load-off profitable

Daniel Funke — Gaudi Components for Concurrency

	Appendix

