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Classical Data Processing Frameworks

» Algorithm:
» consumes and produces data
objects from/to data store
> steers further processing
depending on data

| Service | | | Service Il |
» Tool:
@ —><— » computation that can be re-used
by several algorithms
| Algorithm 1 )—){ Algorithm 2 )—»{ Algorithm 3 | > ma_y consume and produce data
T l T l T l objects
[ Data Store | » Service:

» provide fundamental framework
functionality to all algorithms and
tools

> is managed by the context of the
framework
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Classical Data Processing Frameworks (contd.)

» were designed for sequential processing
> benefited from steadily increasing CPU clock speeds

However, in recent years
> clock speeds have stopped increasing
» amount of collected physics data still does

» with higher collision energies, processing time per event increases
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Addressing the Challenge

One job per core does not scale:
> limited memory amount/bandwidth

» particularly for many-cores not feasible

Instead, fine-level parallelism needs to be exploited
» inter-event: one process handles several events in parallel
> intra-event: executing independent algorithms within one event concurrently

» intra-algorithm: simultaneous processing of many physical objects

Daniel Funke — Gaudi Components for Concurrency



Addressing the Challenge

One job per core does not scale:
> limited memory amount/bandwidth

» particularly for many-cores not feasible

Instead, fine-level parallelism needs to be exploited
» inter-event: one process handles several events in parallel
» intra-event: executing independent algorithms within one event concurrently

» intra-algorithm: simultaneous processing of many physical objects

Daniel Funke — Gaudi Components for Concurrency



The Gaudi Framework

Transient
Event Store

Particle Prop.
Service
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» generic data processing framework

provides clear interfaces

» easily extendable and adaptable to

experiments

used by LHCb, ATLAS, FCC,
HARP, Fermi, ...




The Concurrent Gaudi Project

Goal: enable inter- and intra-event-level parallelism in the Gaudi framework

Milestones:
Nov. 2012: » parallel demonstrator using simulated workloads pee nss 1

Oct. 2013: » parallel execution of LHCb VELO reconstruction (cxep 23
Rel. v0.5
now » evolved workarounds to production quality solutions

Rel. v0.6 . .
» added features essential for parallel scheduling
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Gaudi Components for Concurrency

S ‘ » events processed in loop and handed

T over to scheduler
: |‘_" - » scheduler acquires algorithm
Q_.I ‘ i instances from pool and submits

g

Ji | AA them to Intel TBB runtime
} B ) J &N » each concurrently processed event

j K oo has a dedicated slot in the
= ) whiteboard (multi-slot event store)

2] to retrieve/store data items

Additional components for:
> concurrent message logging
» shared resource protection

» timeline of multi-threaded algorithm execution
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Scheduling
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Sequential Gaudi:
» algorithms are arranged in sequences
» each algorithm produces binary decision that may: » set decision of sequence
> sequences can be composed (AND/OR)
» algorithms can be part of several sequences > early return of sequence
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Scheduling (contd.)
Concurrent Gaudi:
» the control-flow is extracted from the sequences
> executability of remaining algorithms is updated with every algorithm decision

» lazily evaluated sequences limit potential for parallelism
= optimistic execution should be preferred
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Scheduling (contd.)
Concurrent Gaudi:
» the control-flow is extracted from the sequences
» executability of remaining algorithms is updated with every algorithm decision

» lazily evaluated sequences limit potential for parallelism
= optimistic execution should be preferred

Assuming an early return AND-sequence,
if A1 produces false, A;...A; not required to executed
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Scheduling (contd.)

Algorithms require and produce data objects

» establishes data flow between algorithms

» data flow implicitly contained in control flow structure of sequential Gaudi
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Unifying Control and Data Flow

Concurrent Gaudi:
» data dependencies need to be explicitly stated

» control and data flow can be expressed in a unified graph

» graph contains algorithm, data and decision nodes
> two edge types for control flow and data dependencies

» information for scheduler about parallelizable flows within the sequence
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Unifying Control and Data Flow

brunel2012magdown workflow
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Unifying Control and Data Flow

Graph analysis can yield insights on the execution flow:

» unfulfillable data dependencies of algorithms
unreachable data node connected to algorithm

» superfluous control flow constructs
paths of decision nodes of in-degree = out-degree = 1

» critical paths and maximal concurrency level

> priorities for algorithm execution
out-degree of node
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Declaring Data Dependencies

All interaction with data store must be made through data handles

> smart pointers that properly register read/written data object with framework

» thus, allow automatic deduction of data dependencies between algorithms

Data handles provide:
» declaration syntax familiar to Gaudi developers
» transparent use of alternative locations for a data object

» customization of properties in configuration file

File: raw.root File: reco.root

/Event /DAQ/RawEvent /Event /Reco/RawEvent

A . K .
i secondary location primary location
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Declaring Data Dependencies (contd.)

Data handles provide locking mechanism for update operations

Caveats:
» only truly thread-safe if:

» update operation is commutative
» no other mutable data is used for update
e.g. updates depending on another status

» performance penalty to pay
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Declaring Data Dependencies (contd.)

Data handles provide locking mechanism for update operations

Caveats:
» only truly thread-safe if:

» update operation is commutative
» no other mutable data is used for update
e.g. updates depending on another status

» performance penalty to pay

Updating data objects poses non-trivial problems to non-deterministic execution
= just re-ordering of sequences might have unexpected effects

Ideal: everything in the data store is const
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Declaring Tools

Algorithms may use
private tool owned by algorithm exclusively
public tool owned by framework, shared by several algorithms

Interaction with tools via tool handles provides:
» automatic propagation of tools in- and output to algorithm
» declaration syntax familiar to Gaudi developers

» optional configurability of private tools in configuration file

Algorithm,

i— Toal,
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Context-aware Data Access

With concurrently processed events, event-specific data must
a) be stored in the data store

> thread-safe and context-aware
> event-context transparently set by framework through thread local index

b) use Gaudi's context-aware smart pointer

» smart pointer de-references to object associated with processed event
» thread local index set by framework

==

CERN
\W Daniel Funke — Gaudi Components for Concurrency




Muli-threaded Message Logging

Logging to std: : cout is not thread-safe:
» interleaved output from different threads
» corrupted output buffer

TBBMessageSvc resides in own thread:

Thread-safe
FIFO queue

» output messages buffered in thread-safe queue
» no interleaving, order of messages preserved
» drop-in replacement for MessageSvc

> can be used in sequential mode to offload logging

std::cout
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Adoption by Existing Experiments

Concurrent features do not interfere with production sequences
= sequential Gaudi can run unaltered

» data and tool handles can be gradually adopted algorithm by algorithm
= advantage of execution graph analysis even without concurrent processing
e.g. identification of inconsistencies, superfluous algorithms, ...
» existing functionalities of the framework were instrumented to ease migration
» classical tool retrieval method via tool<T>( ... ) method
= properly registers tool usage with parent algorithm /tool
for automatic dependency propagation
> transparent use of context-aware smart pointer
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Adoption by Existing Experiments (contd.)

However, parallel processing does not come for free!
Some things need to be re-[implemented, designed]:
» use of caches within algorithms and tools
» thread-unsafe updates to data objects in the data store

» abuse of public tools for back-channel communication
L
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Adoption by Existing Experiments (contd.)

However, parallel processing does not come for free!

Some things need to be re-[implemented, designed]:

Algorithm, Evil Tool Algorithm,

calcResult(i,)
getResult()

data m_result

implicit dependency between Algorithm; and Algorithm,
= can not be automatically deduced by framework
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Adoption by Existing Experiments (contd.)

However, parallel processing does not come for free!
Some things need to be re-[implemented, designed]:

use of caches within algorithms and tools

>

> thread-unsafe updates to data objects in the data store
» abuse of public tools for back-channel communication
>

Again, incremental approach:
> revise algorithms one at a time

» enable parallel processing workflow by workflow
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Adoption by LHCb

Decision taken to merge concurrency components into production Gaudi
» gradual adaption of data and tool handles
» immediate benefit of static configuration checking
> paving the road to go parallel

v

user feedback will help to distill further best practices for adoption
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Future Circular Collider

FCC develops new experiment software based on Gaudi

» design with concurrency in mind

> algorithms access data store only via data handles
tools are declared at configuration time
data store is used for algorithms’ intermediate results
services are re-entrant or context-aware
const-correctness is enforced

vvyVvVvyy

» challenge of integrating external packages in thread-safe manner
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Summary and Outlook

Features developed in Concurrent Gaudi Project are ready to be used
by existing and future experiments

Existing experiments
» can apply incremental adoption strategy

» immediately benefit from static configuration checking
» pave the road to go parallel

Further developments:

» support adaption of concurrency by experiments
> leverage asynchronous writes to the data store

> explore use of accelerators
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Declaring Data Dependencies

Use data handles to access data store from algorithms and tools:

class MyAlgorithm : public GaudiAlgorithm {

private :
DataObjectHandle<LHCb:: Tracks> m_tracks;
DataObjectHandle<LHCb:: Tracks> m_filteredTracks;

public:
MyAlgorithm( ... ) : GaudiAlgorithm( ... ) {
declarelnput(”Tracks”, m_tracks ,
LHCb:: TrackLocation :: Default);
declareOutput (" FilteredTracks”, m_filteredTracks ,
"Analysis/FilteredTracks”);

}

void execute () {
LHCb:: Tracks % tracks = m_tracks.get();
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Declaring Data Dependencies — Examples

Code: Python configurability

myAlg = MyAlgorithm (' AnalysisFilter ")
myAlg. Inputs. Tracks.Path = 'Skim/Tracks' # use pre—filtered tracks

Code: DataObjectHandle interface

template<typename T>
class DataObjectHandle : public MinimalDataObjectHandle {

bool exist ();

T+ get();

T+ getlfExists ();

T+ getOrCreate();
void put (Tx object);

void lock ();
void unlock ();
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Data Dependencies — Concurrency Features

Locking mechanisms for “thread-safe” access to data objects

Code: DataObjectHandle interface

void MyAlgorithm :: updateStatus(const Status & status){
m_status.lock ();
GlobalStatus* gStatus = m_status.getOrCreate ();
if (! gStatus.contains(status.key()){
gStatus—>insert (status);

} else {

gStatus—>update(status);

m_status.unlock ();

= transitional migration tool, many caveats involved

Daniel Funke — Gaudi Components for Concurrency 2014-09-XX



Declaring Tools

Declare tools used by algorithm at configuration time:

class MyAlgorithm : public GaudiAlgorithm{

private :
ToolHandle<ITrackExtrapolator> m_extrapolator;
ToolHandle<IMaterialLocator> m_materialLocator;
public:
MyAlgorithm( ... ) : GaudiAlgorithm( ... )
declarePrivateTool (m_extrapolator, "TrackLinearExtrapolator”);
// optionally make it a property
declareProperty (" TrackExtrapolator”, m_extrapolator);
declarePublicTool (m_materialLocator, "DetailedMaterialLocator”);
}
I
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Declaring Tools - Example

Code: Python configurability

myAlg = MyAlgorithm (' AnalysisFilter ')
myAlg. TrackExtrapolator.lterations = 1 # rough estimate
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Scheduling

Different scheduling strategies transparently available:

» Parallel Sequential mimic multi-process approach
= but with reduced memory footprint

multi-process multi-thread

context specific state
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Scheduling

Different scheduling strategies transparently available:

» Parallel Sequential mimic multi-process approach
= but with reduced memory footprint

» Forward schedule executable (control-flow) algorithms
as soon as their input becomes available (data-flow)

Only forward scheduler exploits intra-event parallelism

Daniel Funke — Gaudi Components for Concurrency



Scheduling

Different scheduling strategies transparently available:

» Parallel Sequential mimic multi-process approach
= but with reduced memory footprint

» Forward schedule executable (control-flow) algorithms
as soon as their input becomes available (data-flow)
Only forward scheduler exploits intra-event parallelism

Future plans:
» backward schedule only algorithms required to produce final result

» use accelerators: bunch up events to make load-off profitable
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