Consistent massive graviton on general backgrounds

Laura BERNARD

based on arXiv: 1410.8302, 1504.0482, 1512.03620, in collaboration with C. Deffayet, A. Schmidt-May and M. von Strauss

28th Texas Symposium on Relativistic Astrophysics

$$
\text { December } 13^{\text {th }}-18^{\text {th }}
$$

Plan

Introduction to massive and bimetric gravity

Linearised field equations around a background solution

Application to the constraint analysis

Results in different cases

Motivations and history of massive gravity

Motivations
\triangleright Have a better understanding of massive spin-2 fields.
\triangleright Explain the accelerated expansion of the Universe by a modification of GR at long distance.

Motivations and history of massive gravity

Motivations
\triangleright Have a better understanding of massive spin-2 fields.
\triangleright Explain the accelerated expansion of the Universe by a modification of GR at long distance.

Massive gravity : a brief historical review
\triangleright Fierz-Pauli linear massive gravity theory (1939),

Fierz-Pauli theory (1939)

$$
\begin{gathered}
S_{h, m}=-\frac{1}{2} \bar{M}_{h}^{2} \int d^{4} x h_{\mu \nu}\left[\mathcal{E}^{\mu \nu \rho \sigma}+\frac{\bar{m}^{2}}{2}\left(\eta^{\rho \mu} \eta^{\sigma \nu}-\eta^{\mu \nu} \eta^{\rho \sigma}\right)\right] h_{\rho \sigma} \\
\mathcal{E}_{\mu \nu}{ }^{\rho \sigma} h_{\rho \sigma} \equiv-\frac{1}{2}\left[\delta_{\mu}^{\rho} \delta_{\nu}^{\sigma} \square+\eta^{\rho \sigma} \partial_{\mu} \partial_{\nu}-\delta_{\mu}^{\rho} \partial^{\sigma} \partial_{\nu}-\delta_{\nu}^{\rho} \partial^{\sigma} \partial_{\mu}-\eta_{\mu \nu} \eta^{\rho \sigma} \square+\eta_{\mu \nu} \partial^{\rho} \partial^{\sigma}\right] h_{\rho \sigma} \\
\delta \bar{E}_{\mu \nu} \equiv \mathcal{E}_{\mu \nu}{ }^{\rho \sigma} h_{\rho \sigma}+\frac{\bar{m}^{2}}{2}\left(h_{\mu \nu}-h \eta_{\mu \nu}\right)=0
\end{gathered}
$$

- Field eqs. for a massive graviton that has 5 degrees of freedom.
$\triangleright \partial^{\nu} \delta \bar{E}_{\mu \nu} \Longrightarrow 4$ vector constraints : $\partial^{\mu} h_{\mu \nu}-\partial_{\nu} h=0$.
\triangleright Taking another divergence : $2 \partial^{\mu} \partial^{\nu} \delta \bar{E}_{\mu \nu}+\bar{m}^{2} \eta^{\mu \nu} \delta \bar{E}_{\mu \nu}=-\frac{3}{2} \bar{m}^{4} h$.
\triangleright Scalar constraint $h=0$.
- It is the only linear massive gravity theory free of ghost.
- But it needs to be generalized to a non-linear theory.

Motivations and history of massive gravity

Massive gravity : a brief historical review
\triangleright Fierz-Pauli linear massive gravity theory (1939),
\triangleright van Dam, Veltman and Zakharov (vDVZ) discontinuity (1970): FP does not recover GR in the massless limit,
\triangleright Vainshtein mechanism (1972): have to take into account the non-linearities,
\triangleright Boulware Deser (BD) ghost (1972): a ghost-like 6th dof reappears in any non-linear massive gravity theory,
\triangleright de Rham, Gabadadze and Tolley (dRGT) theory (2011): non-linear theory free of the BD ghost.

The dRGT massive gravity theory [de Rham, Gabadadze, Tolley, 2010]

$$
S=M_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{|g|}\left[R(g)-2 m^{2} V\left(S ; \beta_{n}\right)\right]
$$

$$
V\left(S ; \beta_{n}\right)=\sum_{n=0}^{3} \beta_{n} e_{n}(S),
$$

\triangleright Square-root matrix $S^{\mu}{ }_{\nu}=\left[\sqrt{g^{-1} f}\right]^{\mu}$,
$\triangleright e_{n}(S)$ elementary symmetric polynomials:

$$
\begin{aligned}
& e_{0}(S)=1, \quad e_{1}(S)=\operatorname{Tr}[S], \quad e_{2}(S)=\frac{1}{2}\left(\operatorname{Tr}[S]^{2}-\operatorname{Tr}\left[S^{2}\right]\right), \\
& e_{3}(S)=\frac{1}{6}\left(\operatorname{Tr}[S]^{3}-3 \operatorname{Tr}[S] \operatorname{Tr}\left[S^{2}\right]+2 \operatorname{Tr}\left[S^{3}\right]\right)
\end{aligned}
$$

- No BD ghost.

Bimetric theory (1) [Hassan, Rosen 2012]

$$
S=M_{g}^{2} \int \mathrm{~d}^{4} x\left[\sqrt{|g|} R(g)+\alpha^{2} \sqrt{|f|} R(f)-2 m^{2} \sqrt{|g|} V\left(S ; \beta_{n}\right)\right]
$$

$\triangleright V\left(S ; \beta_{n}\right)=\sum_{n=0}^{4} \beta_{n} e_{n}(S)$,
\triangleright Square-root matrix $S^{\mu}{ }_{\nu}=\left[\sqrt{g^{-1} f}\right]_{\nu}^{\mu}$,
$\triangleright e_{n}(S)$ elementary symmetric polynomials:

$$
\begin{aligned}
& e_{0}(S)=1, \quad e_{1}(S)=\operatorname{Tr}[S], \quad e_{2}(S)=\frac{1}{2}\left(\operatorname{Tr}[S]^{2}-\operatorname{Tr}\left[S^{2}\right]\right) \\
& e_{3}(S)=\frac{1}{6}\left(\operatorname{Tr}[S]^{3}-3 \operatorname{Tr}[S] \operatorname{Tr}\left[S^{2}\right]+2 \operatorname{Tr}\left[S^{3}\right]\right), \quad e_{4}(S)=\operatorname{det}(S) .
\end{aligned}
$$

\triangleright No BD ghost.

- Interchange symmetry:

$$
\alpha^{-1} g_{\mu \nu} \leftrightarrow \alpha f_{\mu \nu}, \quad \alpha^{4-n} \beta_{n} \leftrightarrow \alpha^{n} \beta_{4-n}
$$

Bimetric theory (2)

$$
S=M_{g}^{2} \int \mathrm{~d}^{4} x\left[\sqrt{|g|} R(g)+\alpha^{2} \sqrt{|f|} R(f)-2 m^{2} \sqrt{|g|} V\left(S ; \beta_{n}\right)\right]
$$

$V\left(S ; \beta_{n}\right)=\sum_{n=0}^{4} \beta_{n} e_{n}(S)$ and $S^{\mu}{ }_{\nu}=\left[\sqrt{g^{-1} f}\right]^{\mu}{ }_{\nu}$.
Field equations

$$
\begin{gathered}
\left\{\begin{array}{l}
E_{\mu \nu} \equiv \\
\tilde{\mathcal{G}}_{\mu \nu}+m^{2} V_{\mu \nu}=0 \\
\tilde{E}_{\mu \nu} \equiv \tilde{\mathcal{G}}_{\mu \nu}+\frac{m^{2}}{\alpha^{2}} \tilde{V}_{\mu \nu}=0 .
\end{array}\right. \\
V_{\mu \nu}=g_{\mu \rho} \sum_{n=0}^{3}(-1)^{n} \beta_{n} \sum_{k=0}^{n}(-1)^{k} e_{k}(S)\left[S^{n-k}\right]_{\nu}^{\rho}, \\
\tilde{V}_{\mu \nu}=f_{\mu \rho} \sum_{n=0}^{3}(-1)^{n} \beta_{4-n} \sum_{k=0}^{n}(-1)^{k} e_{k}\left(S^{-1}\right)\left[S^{k-n}\right]_{\nu}^{\rho} .
\end{gathered}
$$

Linearised field equations around a background solution

Metrics expansion: $g_{\mu \nu} \rightarrow g_{\mu \nu}+\delta g_{\mu \nu}, f_{\mu \nu} \rightarrow f_{\mu \nu}+\delta f_{\mu \nu}$

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
\delta E_{\mu \nu} \equiv \delta \mathcal{G}_{\mu \nu}+m^{2} \delta V_{\mu \nu}=0, \\
\delta \tilde{E}_{\mu \nu} \equiv \delta \tilde{\mathcal{G}}_{\mu \nu}+\frac{m^{2}}{\alpha^{2}} \delta \tilde{V}_{\mu \nu}=0
\end{array}\right. \\
\delta \mathcal{G}_{\mu \nu}=-\frac{1}{2}\left[\delta_{\mu}^{\rho} \delta_{\nu}^{\sigma} \nabla^{2}+g^{\rho \sigma} \nabla_{\mu} \nabla_{\nu}-\delta_{\mu}^{\rho} \nabla^{\sigma} \nabla_{\nu}-\delta_{\nu}^{\rho} \nabla^{\sigma} \nabla_{\mu}-g_{\mu \nu} g^{\rho \sigma} \nabla^{2}\right. \\
\left.+g_{\mu \nu} \nabla^{\rho} \nabla^{\sigma}+g_{\mu \nu} R^{\rho \sigma}-\delta_{\mu}^{\rho} \delta_{\nu}^{\sigma} R\right] \delta g_{\rho \sigma},
\end{array}\right\} \begin{aligned}
& \delta V_{\mu \nu}=g^{\rho \sigma} V_{\sigma \nu} \delta g_{\mu \rho} \\
& -g_{\mu \rho} \sum_{n=1}^{3}(-1)^{n} \beta_{n} \sum_{k=1}^{n}(-1)^{k}\left\{\frac{1}{2}\left[S^{n-k}\right]^{\rho}{ }_{\nu} \sum_{m=1}^{k}(-1)^{m} e_{k-m}(S)\left[S^{m-2} \delta S^{2}\right]_{\sigma}^{\sigma}\right. \\
& \left.\quad+e_{k-1}(S) \sum_{m=0}^{n-k}\left[S^{m} \delta S S^{n-k-m}\right]_{\nu}^{\rho}\right\} .
\end{aligned}
$$

Linearised field equations around a background solution

Metrics expansion: $g_{\mu \nu} \rightarrow g_{\mu \nu}+\delta g_{\mu \nu}, f_{\mu \nu} \rightarrow f_{\mu \nu}+\delta f_{\mu \nu}$

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
\delta E_{\mu \nu} \equiv \delta \mathcal{G}_{\mu \nu}+m^{2} \delta V_{\mu \nu}=0, \\
\delta \tilde{E}_{\mu \nu} \equiv \delta \tilde{\mathcal{G}}_{\mu \nu}+\frac{m^{2}}{\alpha^{2}} \delta \tilde{V}_{\mu \nu}=0
\end{array}\right. \\
\delta \mathcal{G}_{\mu \nu}=-\frac{1}{2}\left[\delta_{\mu}^{\rho} \delta_{\nu}^{\sigma} \nabla^{2}+g^{\rho \sigma} \nabla_{\mu} \nabla_{\nu}-\delta_{\mu}^{\rho} \nabla^{\sigma} \nabla_{\nu}-\delta_{\nu}^{\rho} \nabla^{\sigma} \nabla_{\mu}-g_{\mu \nu} g^{\rho \sigma} \nabla^{2}\right. \\
\left.+g_{\mu \nu} \nabla^{\rho} \nabla^{\sigma}+g_{\mu \nu} R^{\rho \sigma}-\delta_{\mu}^{\rho} \delta_{\nu}^{\sigma} R\right] \delta g_{\rho \sigma},
\end{array}\right\} \begin{aligned}
& \delta V_{\mu \nu}=g^{\rho \sigma} V_{\sigma \nu} \delta g_{\mu \rho} \\
& -g_{\mu \rho} \sum_{n=1}^{3}(-1)^{n} \beta_{n} \sum_{k=1}^{n}(-1)^{k}\left\{\frac{1}{2}\left[S^{n-k}\right]^{\rho}{ }_{\nu} \sum_{m=1}^{k}(-1)^{m} e_{k-m}(S)\left[S^{m-2} \delta S^{2}\right]_{\sigma}^{\sigma}\right. \\
& \left.\quad+e_{k-1}(S) \sum_{m=0}^{n-k}\left[S^{m} \delta S S^{n-k-m}\right]_{\nu}^{\rho}\right\} .
\end{aligned}
$$

Method 1: Variation of the matrix S

To linearised the field equations we first need to obtain the perturbed matrix S.

Sylvester equation: $A X-X B=C$

$$
S^{\mu}{ }_{\nu}(\delta S)^{\nu}{ }_{\sigma}+(\delta S)^{\mu}{ }_{\nu} S^{\nu}{ }_{\sigma}=\delta\left[S^{2}\right]^{\mu}{ }_{\sigma} .
$$

- Unique explicit solution for δS iff S and -S do not have common eigenvalues $\Longleftrightarrow \mathbb{X} \equiv e_{3} \mathbb{1}+e_{1} S^{2}$ is invertible.

$$
\delta S=\frac{1}{2} \mathcal{X}^{-1} \sum_{k=1}^{4} \sum_{m=0}^{k-1}(-1)^{m} e_{4-k}(S) S^{k-m-2} \delta S^{2} S^{m}
$$

- δS contains more than 30 terms in massive gravity (60 in bimetric gravity)!

Method 2: Redefined fluctuation variables

Redefinition of the perturbation variable

$$
\begin{aligned}
\delta g_{\mu \nu} & =\left(\delta_{\mu}^{\beta} S_{\nu}^{\lambda}+\delta_{\nu}^{\beta} S_{\mu}^{\lambda}\right) \delta g_{\beta \lambda}^{\prime} \\
\delta f_{\mu \nu} & =\left(\delta_{\mu}^{\beta}\left[S^{-1}\right]_{\nu}^{\lambda}+\delta_{\nu}^{\beta}\left[S^{-1}\right]_{\mu}^{\lambda}\right) \delta f_{\beta \lambda}^{\prime}
\end{aligned}
$$

\triangleright We can express all other variation of variables as a function of $\delta g_{\beta \lambda}^{\prime}$ and $\delta f_{\beta \lambda}^{\prime}$.

Method 2: Redefined fluctuation variables

Redefinition of the perturbation variable

$$
\begin{aligned}
\delta g_{\mu \nu} & =\left(\delta_{\mu}^{\beta} S_{\nu}^{\lambda}+\delta_{\nu}^{\beta} S_{\mu}^{\lambda}\right) \delta g_{\beta \lambda}^{\prime} \\
\delta f_{\mu \nu} & =\left(\delta_{\mu}^{\beta}\left[S^{-1}\right]_{\nu}^{\lambda}+\delta_{\nu}^{\beta}\left[S^{-1}\right]_{\mu}^{\lambda}\right) \delta f_{\beta \lambda}^{\prime}
\end{aligned}
$$

\triangleright We can express all other variation of variables as a function of $\delta g_{\beta \lambda}^{\prime}$ and $\delta f_{\beta \lambda}^{\prime}$.

Invertibility of the definitions

$$
g^{-1} \delta g=S g^{-1} \delta g^{\prime}+g^{-1} \delta g^{\prime} S
$$

- Sylvester equation: unique solution for $g^{-1} \delta g^{\prime}$ iff S and $-S$ do not have common eigenvalues.
- $\delta S=-g^{-1} \delta g^{\prime} S^{2}+S^{-1} g^{-1} \delta f^{\prime} S^{-1}$: only two terms in δS.

Search for a scalar constraint

Counting the degrees of freedom
$\triangleright 4$ vector constraints: $\nabla^{\nu} \delta E_{\mu \nu}=0$
\triangleright Scalar constraint: unlike in the F-P theory, it cannot be obtained from a linear combination of $g^{\mu \nu} \delta E_{\mu \nu}$ and $\nabla^{\mu} \nabla^{\nu} \delta E_{\mu \nu}$.

Search for a scalar constraint

Counting the degrees of freedom
$\triangleright 4$ vector constraints: $\nabla^{\nu} \delta E_{\mu \nu}=0$
\triangleright Scalar constraint: unlike in the F-P theory, it cannot be obtained from a linear combination of $g^{\mu \nu} \delta E_{\mu \nu}$ and $\nabla^{\mu} \nabla^{\nu} \delta E_{\mu \nu}$.

Generalised traces and divergences of the field equations

1. We define all possible ways of tracing $\delta E_{\mu \nu}$ with S_{ν}^{μ} :

$$
\begin{aligned}
& \Phi_{i}^{(g, f)} \equiv\left[S^{i}\right]^{\mu \nu} \delta E_{\mu \nu}^{(g, f)}, \quad 0 \leq i \leq 3 \\
& \Psi_{i}^{(g, f)} \equiv\left[S^{i}\right]^{\mu \nu} \nabla_{\nu} \nabla^{\lambda} \delta E_{\lambda \mu}^{(g, f)} \quad 0 \leq i \leq 3 .
\end{aligned}
$$

2. Find a linear combination of these 16 scalars for which the 2 nd derivative terms vanish:

$$
\sum_{i=0}^{3}\left(u_{i} \Phi_{i}^{(g)}+v_{i} \Psi_{i}^{(g)}\right)+\sum_{i=0}^{3}\left(U_{i} \Phi_{i}^{(f)}+V_{i} \Psi_{i}^{(f)}\right) \sim 0
$$

A particular case in massive gravity: the beta 1 model

We assume $\boldsymbol{\beta}_{\mathbf{2}}=\boldsymbol{\beta}_{\mathbf{3}}=0$ and $\boldsymbol{f}_{\boldsymbol{\mu}}$ arbitrary but non-dynamical.
Field equations

$$
\mathcal{G}_{\mu \nu}+m^{2}\left[\beta_{0} g_{\mu \nu}+\beta_{1} g_{\mu \rho}\left(e_{1}(S) \delta_{\nu}^{\rho}-S_{\nu}^{\rho}\right)\right]=0,
$$

It can be solved for $S^{\mu}{ }_{\nu}$:

$$
S^{\rho}{ }_{\nu}=\frac{1}{\beta_{1} m^{2}}\left[R^{\rho}{ }_{\nu}-\frac{1}{6} \delta_{\nu}^{\rho} R-\frac{m^{2} \beta_{0}}{3} \delta_{\nu}^{\rho}\right] .
$$

- It is only possible in the $\boldsymbol{\beta}_{1}$ model.
- It can be used to eliminate any occurrences of S (or f) in the linearised field equations.

A particular case: the beta 1 model

\triangleright In the $\boldsymbol{\beta}_{\mathbf{1}}$ model, we can express the linearised field equations as a function of $\boldsymbol{g}_{\boldsymbol{\mu}}$ and its curvature.
\triangleright We now take these equations as our starting point, no more assuming that $g_{\mu \nu}$ is a background solution.

A particular case: the beta 1 model

\triangleright In the $\boldsymbol{\beta}_{\mathbf{1}}$ model, we can express the linearised field equations as a function of $\boldsymbol{g}_{\boldsymbol{\mu} \boldsymbol{\nu}}$ and its curvature.
\triangleright We now take these equations as our starting point, no more assuming that $g_{\mu \nu}$ is a background solution.

The fifth scalar constraint

$$
-\frac{m^{2} \beta_{1} e_{4}}{2} \Phi_{0}-e_{3} \Psi_{0}+e_{2} \Psi_{1}-e_{1} \Psi_{2}+\Psi_{3}=0
$$

- Massive graviton (with 5 dof) propagating on a single arbitrary background.

Beyond the beta 1 model: general massive gravity

$$
\bar{\Psi}=\left[S^{-1}\right]^{\mu \nu} \nabla_{\nu} \nabla^{\lambda} \delta E_{\lambda \mu}=\frac{1}{e_{4}}\left(e_{3} \Psi_{0}-e_{2} \Psi_{1}+e_{1} \Psi_{2}-\Psi_{3}\right)
$$

1. $\boldsymbol{\beta}_{3}=\mathbf{0}$

$$
\frac{m^{2} \beta_{1}}{2} \Phi_{0}+m^{2} \beta_{2} \Phi_{1}+\bar{\Psi}=0
$$

Beyond the beta 1 model: general massive gravity

$$
\bar{\Psi}=\left[S^{-1}\right]^{\mu \nu} \nabla_{\nu} \nabla^{\lambda} \delta E_{\lambda \mu}=\frac{1}{e_{4}}\left(e_{3} \Psi_{0}-e_{2} \Psi_{1}+e_{1} \Psi_{2}-\Psi_{3}\right)
$$

1. $\boldsymbol{\beta}_{3}=\mathbf{0}$

$$
\frac{m^{2} \beta_{1}}{2} \Phi_{0}+m^{2} \beta_{2} \Phi_{1}+\bar{\Psi}=0
$$

2. $\boldsymbol{\beta}_{\mathbf{3}} \neq \mathbf{0}$

$$
\begin{aligned}
& \frac{m^{2} \beta_{1}}{2} \Phi_{0}+m^{2} \beta_{2} \Phi_{1}-m^{2} \beta_{3}\left(\Phi_{2}-e_{1} \Phi_{1}+\frac{1}{2} e_{2} \Phi_{0}\right)+\bar{\Psi} \\
& \quad \sim m^{2} \beta_{3}\left(S^{\mu \lambda}\left[S^{2}\right]^{\nu \beta}-S^{\mu \nu}\left[S^{2}\right]^{\beta \lambda}\right) \nabla_{\mu} \nabla_{\nu} \delta g_{\beta \lambda}^{\prime}
\end{aligned}
$$

- It is not a covariant constraint but all the second time derivatives acting on the lapse and shifts vanish.

Going back to bimetric theory

- Problematic terms: $\left[S^{-1}\right]^{\nu}{ }_{\kappa} \nabla^{\kappa} \nabla^{\mu} \delta_{f} V_{\mu \nu}+[S]^{\nu}{ }_{\kappa} \tilde{\nabla}^{\kappa} \tilde{\nabla}^{\mu} \delta_{g} \tilde{V}_{\mu \nu}$,
- Repeating the same analysis using the interchange symmetry, we could not find a covariant constraint.
- Performing a $3+1$ decomposition \Longrightarrow all the 2nd-time derivative acting on the lapse or shifts in the problemetic terms disappear.

$$
\begin{aligned}
& \frac{m^{2} \beta_{1}}{2} \Phi_{0}^{(g)}+m^{2} \beta_{2} \Phi_{1}^{(g)}-m^{2} \beta_{3}\left(\Phi_{2}^{(g)}-e_{1} \Phi_{1}^{(g)}+\frac{1}{2} e_{2} \Phi_{0}^{(g)}\right) \\
& \left.+\bar{\Psi}^{(g)}+\text { (interchange symmmetry } g \leftrightarrow f\right)=0
\end{aligned}
$$

Conclusion

\triangleright Linearised equations of bimetric theory in the general case,
\triangleright Condition for linearisation: S and $-S$ do not have common eigenvalues.
\triangleright Consistent theory for a massive graviton propagating in a single arbitrary background metric (β_{1} model).
\triangleright Five covariant constraints in the metric formulation of massive gravity, when $\beta_{3}=0$.
\triangleright Non-covariant scalar constraint when $\beta_{3} \neq 0$ and in bimetric theories.

- Interesting applications: cosmological pertubations, Higuchi bound, partial masslessness...

