First-order cosmological perturbationsengendered by point-like masses:all scales covered

Maxim Eingorn

North Carolina Central University,CREST and NASA Research Centers,Durham, North Carolina, U.S.A.

arXiv:1509.03835v1

Outline

Introduction

(concordance cosmology, perturbation theory)

Discrete picture of (scalar and vector) cosmological perturbations (at all sub- and super-horizon scales)

(weak gravitational field limit, point-like masses)

Menu of properties, benefits, and bonuses

- **- Minkowski background limit**
- **- Newtonian approximation and homogeneity scale**
- **- Yukawa interaction and zero average values**
- **- Nonzero spatial curvature and screening of gravity**

Conclusion + fun

Introduction

Cosmological principle

on large enoug^h scales the Universe is treated as being \longrightarrow **R**(obertson)-W(alker) **homogeneous and isotropic F(riedmann)-L(emaître)background metric**

on sufficiently small scales the Universe ishighly inhomogeneousobserved separate galaxies, their groups and clusters primordial fluctuations at \longleftarrow **perturbation theory structure formation from earliest evolution stages**

Two main distinct approachesto structure growth investigation

The acute problem: construction of ^a self-consistent unified scheme, which would be valid for arbitrary (sub- & super-horizon) scales and incorporate linear & nonlinear effects.

very promising in precision cosmology era

Weak gravitational field limit

Deviations of the metric coefficients from their background (average) values are considered as 1st order quantities, while the 2nd order is completely disregarded.

A couple of previous attemptsto develop a unified perturbation theory

I. Generalization of nonrelativistic post-Minkowski formalism to the cosmological case in the form of relativistic post-Friedmann formalism, which would be valid on all scales and include the full nonlinearityof Newtonian gravity at small distances:

> **expansion of the metric in powers of theparameter 1/c (the inverse speed of light)**

I. Milillo, D. Bertacca, M. Bruni and A. Maselli, Phys. Rev. D 92, 023519 (2015) arXiv:1502.02985v2

II. Formalism for relativistic N-body simulations:

different orders of smallness given to the metric corrections and theirspatial derivatives ("dictionary")

J. Adamek, D. Daverio, R. Durrer and M. Kunz, Phys. Rev. D 88, 103527 (2013); **arXiv:1308.6524v2 S.R. Green and R.M. Wald, Phys. Rev. D 85, 063512 (2012);arXiv:1111.2997v2**

presenting nonrelativistic matter as separate pointlike massive particlesDiscrete cosmology:

Geneva, Switzerland December 14, 2015 arXiv:1509.03835v1⁸ **Advantages of the unified scheme developed here**

1) no any supplementary approximations or extra assumptions in addition to the weak field limit;

2) spatial and temporal derivatives are treatedon an equal footing, no "dictionaries";

3) no expansion into series with respect to the ratio 1/c;

4) no artificial mixing of first- and second-order contributions to the metric;

5) sub- or super-horizon regions are not singled out

Discrete picture of (scalar and vector) cosmological perturbations

Unperturbed FLRW metric describing (homogeneous and isotropic on the average) Universe:

Friedmann Eqs. in the framework of the pure ΛCDM model (with a negligible radiation contribution):

Perturbed metric describing (inhomogeneous and anisotropic) Universe:

$$
ds^{2} = a^{2} \left[\left(1 + 2\Phi \right) d\eta^{2} + 2B_{\alpha} dx^{\alpha} d\eta - \left(1 - 2\Phi \right) \delta_{\alpha\beta} dx^{\alpha} dx^{\beta} \right]
$$

function $\Phi(\eta, \mathbf{r})$ and spatial vector $\mathbf{B}(\eta, \mathbf{r}) \equiv (B_1, B_2, B_3)$: **scalar and vector perturbations, respectively**

**tensor perturbations are
not taken into account**

Einstein Eqs.:
$$
G_i^k = \kappa T_i^k + \Lambda \delta_i^k
$$
 i,k = 0,1,2,3

0

 $\frac{B_\alpha}{\chi^\beta} =$

 $\nabla \mathbf{B} = \mathcal{S}^{\alpha \beta} \, \frac{\partial B_{\alpha}}{\partial x^{\beta}} = 0$

mixed components of Einstein andmatter energy-momentum tensors

$$
G_0^0 = \kappa T_0^0 + \Lambda \implies \Delta \Phi - 3\tilde{H} \left(\Phi' + \tilde{H} \Phi \right) = \frac{1}{2} \kappa a^2 \delta T_0^0
$$

$$
G_\alpha^0 = \kappa T_\alpha^0 \implies \frac{1}{4} \Delta B_\alpha + \frac{\partial}{\partial x^\alpha} \left(\Phi' + \tilde{H} \Phi \right) = \frac{1}{2} \kappa a^2 \delta T_\alpha^0
$$

$$
G_\alpha^\beta = \kappa T_\alpha^\beta + \Lambda \delta_\alpha^\beta \implies \Phi'' + 3\tilde{H} \Phi' + \left(2\tilde{H}' + \tilde{H}^2 \right) \Phi = 0
$$

$$
\left(\frac{\partial B_\alpha}{\partial x^\beta} + \frac{\partial B_\beta}{\partial x^\alpha} \right)' + 2\tilde{H} \left(\frac{\partial B_\alpha}{\partial x^\beta} + \frac{\partial B_\beta}{\partial x^\alpha} \right) = 0
$$

$$
\Delta \equiv \delta^{\alpha\beta} \frac{\partial^2}{\partial x^{\alpha} \partial x^{\beta}}
$$

Lanlace opera

$$
T_i^k = \overline{T}_i^k + \delta T_i^k \qquad \qquad \overline{T}_0^0 = \overline{\mathcal{E}}
$$

Laplace operator in comoving coordinates **only nonzero average mixed component**

import the 1st order of smallness *n***in rhs of linearized Einstein Eqs.** $\widetilde{v}_{n}^{\alpha}$

 $\delta \! \rho \equiv \rho - \overline{\rho}$

¹⁵

$$
\delta T_0^0 \equiv T_0^0 - \overline{T}_0^0 = \frac{c^2}{a^3} \delta \rho + \frac{3 \overline{\rho} c^2}{a^3} \Phi
$$

\n
$$
\delta T_\alpha^0 = -\frac{c^2}{a^3} \sum_n m_n \delta (\mathbf{r} - \mathbf{r}_n) \tilde{v}_n^\alpha + \frac{\overline{\rho} c^2}{a^3} B_\alpha = -\frac{c^2}{a^3} \sum_n \rho_n \tilde{v}_n^\alpha + \frac{\overline{\rho} c^2}{a^3} B_\alpha
$$

\n
$$
\delta T_\alpha^\beta = 0 \qquad \text{replacements:}
$$

\n
$$
\rho \Phi \rightarrow \overline{\rho} \Phi, \quad \rho \mathbf{B} \rightarrow \overline{\rho} \mathbf{B}
$$

\n
$$
\Delta \Phi - 3 \tilde{H} (\Phi' + \tilde{H} \Phi) - \frac{3 \kappa \overline{\rho} c^2}{2a} \Phi = \frac{\kappa c^2}{2a} \delta \rho
$$

\n
$$
\frac{1}{4} \Delta \mathbf{B} + \nabla (\Phi' + \tilde{H} \Phi) - \frac{\kappa \overline{\rho} c^2}{2a} \mathbf{B} = -\frac{\kappa c^2}{2a} \sum_n m_n \delta (\mathbf{r} - \mathbf{r}_n) \tilde{\mathbf{v}}_n = -\frac{\kappa c^2}{2a} \sum_n \rho_n \tilde{\mathbf{v}}_n
$$

Fourier transform:

$$
\hat{\Xi}(\eta, \mathbf{k}) \equiv \int \Xi(\eta, \mathbf{r}) \exp(-i\mathbf{k}\mathbf{r}) d\mathbf{r} = -\frac{i}{k^2} \sum_n m_n (\mathbf{k}\tilde{\mathbf{v}}_n) \exp(-i\mathbf{k}\mathbf{r}_n) \qquad k \equiv |\mathbf{k}|
$$

$$
\hat{\rho}_n(\eta, \mathbf{k}) \equiv \int \rho_n(\eta, \mathbf{r}) \exp(-i\mathbf{k}\mathbf{r}) d\mathbf{r} = m_n \int \delta(\mathbf{r} - \mathbf{r}_n) \exp(-i\mathbf{k}\mathbf{r}) d\mathbf{r} = m_n \exp(-i\mathbf{k}\mathbf{r}_n)
$$

$$
\frac{1}{4}\Delta \mathbf{B} - \frac{\kappa \bar{\rho}c^2}{2a} \mathbf{B} = -\frac{\kappa c^2}{2a} \left(\sum_n \rho_n \tilde{\mathbf{v}}_n - \nabla \Xi \right) \qquad \text{for } \lambda \to \infty
$$
\n
$$
-\frac{k^2}{4} \hat{\mathbf{B}} - \frac{\kappa \bar{\rho}c^2}{2a} \hat{\mathbf{B}} = -\frac{\kappa c^2}{2a} \left(\sum_n \hat{\rho}_n \tilde{\mathbf{v}}_n - i \mathbf{k} \hat{\Xi} \right)
$$
\n
$$
\hat{\mathbf{B}} = \frac{2\kappa c^2}{a} \left(k^2 + \frac{2\kappa \bar{\rho}c^2}{a} \right)^{-1} \sum_n m_n \exp(-i \mathbf{k} \mathbf{r}_n) \left(\tilde{\mathbf{v}}_n - \frac{(\mathbf{k} \tilde{\mathbf{v}}_n)}{k^2} \mathbf{k} \right)
$$
\n
$$
\mathbf{B} = \frac{\kappa c^2}{8\pi a} \sum_n \left[\frac{m_n \tilde{\mathbf{v}}_n}{|\mathbf{r} - \mathbf{r}_n|} \cdot \frac{\left(3 + 2\sqrt{3}q_n + 4q_n^2 \right) \exp\left(-2q_n / \sqrt{3} \right) - 3}{q_n^2} + \frac{m_n \left[\tilde{\mathbf{v}}_n (\mathbf{r} - \mathbf{r}_n) \right]}{|\mathbf{r} - \mathbf{r}_n|^3} (\mathbf{r} - \mathbf{r}_n) \cdot \frac{9 - \left(9 + 6\sqrt{3}q_n + 4q_n^2 \right) \exp\left(-2q_n / \sqrt{3} \right)}{q_n^2} \right]
$$

n_n *n n*

 $\mathbf{r} - \mathbf{r}_n$

q

¹⁷

$$
\sum \vec{A} \vec{b} \vec{b} \longrightarrow \sum \vec{B} \vec{b} \qquad \Delta \Phi - \frac{3 \kappa \bar{\rho} c^2}{2a} \Phi = \frac{\kappa c^2}{2a} \delta \rho - \frac{3 \kappa c^2 \tilde{H}}{2a} \Xi
$$
\n
$$
-k^2 \hat{\Phi} - \frac{3 \kappa \bar{\rho} c^2}{2a} \hat{\Phi} = \frac{\kappa c^2}{2a} \sum_n \hat{\rho}_n - \frac{\kappa \bar{\rho} c^2}{2a} (2 \pi)^3 \delta(\mathbf{k}) - \frac{3 \kappa c^2 \tilde{H}}{2a} \hat{\Xi}
$$
\n
$$
\hat{\Phi} = -\frac{\kappa c^2}{2a} \left(k^2 + \frac{3 \kappa \bar{\rho} c^2}{2a} \right)^{-1} \left[\sum_n m_n \exp(-i \mathbf{k} \mathbf{r}_n) \left(1 + 3i \tilde{H} \frac{(\mathbf{k} \tilde{\mathbf{v}}_n)}{k^2} \right) - \bar{\rho} (2 \pi)^3 \delta(\mathbf{k}) \right]
$$

$$
\Phi = \frac{1}{3} - \frac{\kappa c^2}{8\pi a} \sum_n \frac{m_n}{|\mathbf{r} - \mathbf{r}_n|} \exp(-q_n)
$$

+
$$
\frac{3\kappa c^2}{8\pi a} \tilde{H} \sum_n \frac{m_n \left[\tilde{\mathbf{v}}_n (\mathbf{r} - \mathbf{r}_n) \right]}{|\mathbf{r} - \mathbf{r}_n|} \cdot \frac{1 - (1 + q_n) \exp(-q_n)}{q_n^2}
$$

$$
\mathbf{q}_{n}(\eta,\mathbf{r})\equiv\sqrt{\frac{3\kappa\overline{\rho}c^{2}}{2a}}\left(\mathbf{r}-\mathbf{r}_{n}\right) \qquad q_{n}\equiv\left|\mathbf{q}_{n}\right|
$$

Geneva, Switzerland December 14, 2015 arXiv:1509.03835v1

¹⁸

Thus, explicit expressions for 1st order vector andscalar cosmological perturbations are determined.

ˆ**Incidentally,** $\nabla \mathbf{B} = 0 \rightarrow \mathbf{k} \mathbf{B} = 0$ satisfied

Equations of motion

Spacetime interval for the n-th particle

$$
ds_n = a \Big[1 + 2\Phi + 2B_\alpha \tilde{v}_n^\alpha - (1 - 2\Phi) \delta_{\alpha\beta} \tilde{v}_n^\alpha \tilde{v}_n^\beta \Big]^{1/2} d\eta
$$

$$
\Big[a \Big(\mathbf{B} \big|_{\mathbf{r} = \mathbf{r}_n} - \tilde{\mathbf{v}}_n \Big) \Big] = a \nabla \Phi \big|_{\mathbf{r} = \mathbf{r}_n} \qquad \Big| \rho_n \Big| \sum_n
$$

$$
\rho(a\mathbf{B})' - \sum_{n} \rho_{n} (a\tilde{\mathbf{v}}_{n})' = a\rho \nabla \Phi \qquad \sum_{n} \rho_{n} (a\tilde{\mathbf{v}}_{n})' = -a\rho \nabla \Phi + \overline{\rho} (a\mathbf{B})'
$$

$$
\sum_{n} \hat{\rho}_{n} (a\tilde{\mathbf{v}}_{n})' = \sum_{n} m_{n} \exp(-i\mathbf{k}\mathbf{r}_{n}) (a\tilde{\mathbf{v}}_{n})' = -a\rho \nabla \Phi + \overline{\rho} (a\hat{\mathbf{B}})'
$$

all (2??) satisfied

$$
(a\tilde{\mathbf{v}}_{n})' = -a (\nabla \Phi|_{\mathbf{r} = \mathbf{r}_{n}} + \widetilde{H} \mathbf{B}|_{\mathbf{r} = \mathbf{r}_{n}})
$$

Geneva, Switzerland
December 14, 2015
arXiv:1509.03835v1 20

Menu of properties, benefits,and bonuses

Minkowski background limit $a \rightarrow const \Rightarrow \tilde{H} \rightarrow 0$ $\overline{\rho} \to 0 \Rightarrow q_n \to 0$ $\rightarrow 0 \Rightarrow q_n \rightarrow$ 2 $8\pi a$ $\left| \mathbf{r} - \mathbf{r} \right|$ c^2 $\frac{n}{m} = -\frac{N}{N}$ $\sum_{n=1}^{N} \frac{m_n}{n}$ $n \left| \frac{1}{n} \right|$ $n \left| \frac{1}{n} \right|$ $\frac{c^2}{\pi a} \sum_n \frac{m_n}{|\mathbf{r} - \mathbf{r}_n|} = -\frac{G_N}{c^2} \sum_n \frac{m_n}{|\mathbf{R} - \mathbf{r}_n|}$ κ π $\Phi \rightarrow -\frac{\Delta c}{8\pi a} \sum_{n} \frac{m_n}{|\mathbf{r} - \mathbf{r}_n|} = -\frac{G_N}{c^2} \sum_{n} \frac{m_n}{|\mathbf{R} - \mathbf{R}_n|}$ $\mathbf{R}_n = a\mathbf{r}_n$ **The constant 1/3 has been dropped since it originates exclusively from the terms containing** $\overline{\rho}$ **. physical radiusvectors***aa*== $\mathbf{R} = a\mathbf{r}$ $\mathbf{R}_n = a \mathbf{r}_n$

Geneva, Switzerland December 14, 2015 arXiv:1509.03835v1

²¹

$$
\mathbf{B} \rightarrow \frac{\kappa c^2}{4\pi a} \sum_n \left[\frac{m_n \tilde{\mathbf{v}}_n}{|\mathbf{r} - \mathbf{r}_n|} + \frac{m_n \left[\tilde{\mathbf{v}}_n (\mathbf{r} - \mathbf{r}_n) \right]}{|\mathbf{r} - \mathbf{r}_n|^3} (\mathbf{r} - \mathbf{r}_n) \right]
$$
\n
$$
= \frac{G_N}{2c^2} \sum_n \frac{m_n}{|\mathbf{R} - \mathbf{R}_n|} \left[4 \tilde{\mathbf{v}}_n + \frac{4 \left[\tilde{\mathbf{v}}_n (\mathbf{R} - \mathbf{R}_n) \right]}{|\mathbf{R} - \mathbf{R}_n|} \left[\mathbf{R} - \mathbf{R}_n \right] \right]
$$
\n
$$
\tilde{\mathbf{v}}_n \equiv \frac{d\mathbf{r}_n}{d\eta}, \quad \mathbf{v}_n \equiv \frac{d\mathbf{r}_n}{dt} \qquad \text{The sum of these integers}
$$
\n
$$
cdt = ad\eta \implies \tilde{\mathbf{v}}_n = \frac{a\mathbf{v}_n}{c} \qquad \text{is the same for the other appropriate choices of}
$$
\nsynchronous time\n
$$
\mathbf{gauge conditions as well.}
$$

complete agreement with textbooks

Newtonian approximationHomogeneity scale

(peculiar motion as a gravitational field source is completely ignored) $\tilde{\textbf{v}}_{_n} \rightarrow 0$ 1*n q* ≪

$$
\Phi \to -\frac{G_N}{c^2} \sum_n \frac{m_n}{|\mathbf{R} - \mathbf{R}_n|} \qquad \qquad \mathbf{B} \to 0
$$

The constant 1/3 has been dropped for the other reason: only the gravitational potential gradiententers into Eqs. of motion describing dynamicsof the considered system of gravitating masses.

$$
\ddot{\mathbf{R}}_{j} - \frac{\ddot{a}}{a} \mathbf{R}_{j} = -G_N \sum_{n \neq j} \frac{m_n (\mathbf{R}_{j} - \mathbf{R}_{n})}{\left|\mathbf{R}_{j} - \mathbf{R}_{n}\right|^{3}}
$$

dot: derivative with respect to *^t*

complete agreement with Eqs. for N-body simulations

What are the applicability *bounds for the inequality?*

$$
q_n \ll 1 \quad \Leftrightarrow \quad |\mathbf{R} - \mathbf{R}_n| \ll \lambda
$$

$$
H = \frac{\dot{a}}{a} = \frac{c\tilde{H}}{a}
$$
\n
$$
\lambda = \sqrt{\frac{2a^3}{3\kappa\bar{p}c^2}} = \sqrt{\frac{2c^2}{9H_0^2\Omega_M} \left(\frac{a}{a_0}\right)^3}
$$
\n
$$
\Omega_M = \frac{\kappa\bar{p}c^4}{3H_0^2a_0^3}
$$
\nHubble

\n
$$
H_0 \approx 68 \text{ km/s/Mpc}
$$
\ncurrent values

Geneva, Switzerland December 14, 2015 arXiv:1509.03835v1

today $\lambda_0 \approx 3700 \text{ Mpc} = 3.7 \text{ Gpc} \approx 12 \text{ Gly}$

This Yukawa interaction range and dimensions of the known largest cosmic structures are of the same order !

Hercules-Corona Borealis Great Wall ~ 2-3 Gpc

I. Horvath, J. Hakkila and Z. Bagoly, A&A 561, L12 (2014); arXiv:1401.0533

Giant Gamma Ray Burst Ring ~ 1.7 Gpc

L.G. Balazs, Z. Bagoly, J.E. Hakkila, I. Horvath, J. Kobori, I. Racz, L.V. Toth, Mon. Not. R. Astron. Soc. 452, 2236 (2015); arXiv:1507.00675

Huge Large Quasar Group ~ 1.2 Gpc

R.G. Clowes, K.A. Harris, S. Raghunathan, L.E. Campusano, I.K. Soechting, M.J. Graham, Mon. Not. R. Astron. Soc. 429, 2910 (2013); arXiv:1211.6256

Formidable challenge: dimensions of the largest cosmic structures essentially exceed the scale of homogeneity ∼ \sim 370 Mpc.

J.K. Yadav, J.S. Bagla and N. Khandai, Mon. Not. Roy. Astron. Soc. 405, 2009 (2010); arXiv:1001.0617v2

obvious hint at ^a resolution opportunity:to associate the scale of homogeneity withλ (~ 3.7 Gpc today) instead of [~] ³⁷⁰ Mpc

 $\lambda \sim a^{3/2}$ [∼] *^a*

Cosmological principle (Universe is homogeneous and isotropic when viewed at ^a sufficiently large scale) is saved and reinstated when this typical averaging scaleis greater than ^λ. *a* $a \downarrow \Rightarrow$ \Rightarrow $\lambda \downarrow$

What are the applicability boundsfor peculiar motion ignoring?

For ^a single gravitating mass momentarily located at*^m*1**the origin of coordinates with the velocity collinear to : r**

$$
\frac{3\kappa c^2}{8\pi a}\tilde{H}\cdot m_1\tilde{v}_1\cdot\frac{1}{2} = \frac{3}{2}\tilde{H}\tilde{v}_1r = \frac{3}{2}\frac{Hav_1R}{c^2} \qquad R \equiv |\mathbf{R}| = ar
$$
\n
$$
\frac{\kappa c^2}{8\pi a}\cdot\frac{m_1}{r} = \frac{3}{2}\tilde{H}\tilde{v}_1r = \frac{3}{2}\frac{Hav_1R}{c^2} \qquad R \equiv |\mathbf{R}| = ar
$$
\n
$$
q_1 \ll 1
$$

$$
3H \cdot av_1 \cdot R/(2c^2) \ll (1 \div 2) \times 10^{-3}
$$

same estimate for ^aratio of derivatives

absolute value of the particle's physical peculiar velocity \sim (250 ÷ 500) km/s

$$
\lambda \neq c/H
$$
 if $q = -\ddot{a}/(aH^2) \neq -2/3$
\nHubble
\nradius deceleration parameter
\n
$$
\frac{1}{\lambda^2} = \frac{3H^2}{c^2}(1+q) = -\frac{3\dot{H}}{c^2}
$$
 $\lambda = \frac{1}{\sqrt{3(1+q)}}\frac{c}{H}$

Geneva, Switzerland December 14, 2015 arXiv:1509.03835v1²⁸

Yukawa interactionZero average values

$$
\Phi = \frac{1}{3} + \left(\sum_{n} \phi_n\right) + \text{velocity-dependent part}
$$

manifestation of the superposition principle

$$
\phi_n = -\frac{\kappa c^2}{8\pi a} \frac{m_n}{|\mathbf{r} - \mathbf{r}_n|} \exp(-q_n) = -\frac{G_N m_n}{c^2 |\mathbf{R} - \mathbf{R}_n|} \exp\left(-\frac{|\mathbf{R} - \mathbf{R}_n|}{\lambda}\right)
$$

Yukawa potentials coming from each single particle, with the same interaction radius λ

Computation of a sum in Newtonian approximation

P.J.E. Peebles, The large-scale structure of the Universe, Princeton University Press, Princeton (1980).

$$
\Phi \sim \int d\mathbf{r}' \frac{\rho|_{\mathbf{r}=\mathbf{r}'}-\overline{\rho}}{|\mathbf{r}-\mathbf{r}'|} \qquad (8.1)
$$
\n
$$
-\nabla \Phi \sim \int d\mathbf{r}' \frac{\rho|_{\mathbf{r}=\mathbf{r}'}}{|\mathbf{r}-\mathbf{r}'|^{3}} (\mathbf{r}-\mathbf{r}') \qquad -\nabla \Phi \sim \sum_{n} \frac{m_{n}}{|\mathbf{r}-\mathbf{r}_{n}|^{3}} (\mathbf{r}-\mathbf{r}_{n}) \qquad (8.5)
$$

not well-defined, depends on the order of adding terms; addition in the order of increasing distances $|\mathbf{r}-\mathbf{r}_{n}|$ and **a spatially homogeneous and isotropic random process** with the correlation length $\ll c/H$ for the distribution ϵ **contribution of particles are required for convergence of such a sum** $\mathbf{r} - \mathbf{r}$ ⁿ

Summing up the Yukawa potentials

convergent in all pointsexcept the positions ofthe gravitating masses

no famous Neumann-Seeliger gravitational paradox

no obstacles in theway of computation, the order of adding terms corresponding to different particlesis arbitrary and does not depend on theirlocations

particles' distribution may be nonrandomand anisotropic (e.g., the lattice Universe)

 $\sum\phi_n$

n

$$
\overline{\phi}_n \equiv \frac{1}{V} \int_V d\mathbf{r} \phi_n = -\frac{\kappa c^2}{8\pi a} \frac{m_n}{V} \int_V \frac{d\mathbf{r}}{|\mathbf{r} - \mathbf{r}_n|} \exp\left(-\frac{a|\mathbf{r} - \mathbf{r}_n|}{\lambda}\right) = -\frac{\kappa c^2}{8\pi a} \frac{m_n}{V} \frac{4\pi \lambda^2}{a^2} = -\frac{m_n}{V} \frac{1}{3\overline{\rho}}
$$

comoving averaging volume, tending to infinity

$$
\frac{1}{V} \sum_{n} m_{n} \equiv \overline{\rho}
$$
\n
$$
= 1 \quad \sum_{n} \overline{\phi}_{n} = -\frac{1}{3\overline{\rho}} \cdot \frac{1}{V} \sum_{n} m_{n} = -\frac{1}{3}
$$

$$
\overline{\Phi} = \frac{1}{3} + \sum_{n} \overline{\phi}_{n} + \text{velocity-dependent part} = 0
$$

-1/3

$$
\overline{\delta T}^0_0 = 0
$$
 no first-order backreaction effects
\n
$$
\overline{\delta T}^0_\alpha = 0
$$

Geneva, Switzerland December 14, 2015 arXiv:1509.03835v1³² **In addition, in the limiting case of the homogeneous mass distribution** $\Phi = 0$ at any point. For example, **on the surface of a sphere of the physical radius R the contributions from its inner and outer regions combined with 1/3 ^give 0.**

Then Eq. of motion of a test cosmic body reads:

$$
\ddot{\mathbf{R}} = \frac{\ddot{a}}{a} \mathbf{R}
$$

($\ddot{\textbf{R}}$ is reasonably connected **with the acceleration of the global Universe expansion)**

Nonzero spatial curvatureScreening of gravity

⁺ 1 for the spherical (closed) space

 1 for the hyperbolic (open) space

Solutions are smooth at any point except particles' positions (where Newtonian limits are reached) andcharacterized by zero average values as before.

$$
\lambda = \frac{1}{\sqrt{3(1+q)}} \frac{c}{H}
$$
 not only for the curved space,
but also in the presence of
an arbitrary number
of additional Universe components
in the form of barotropic perfect fluids

at the radiation-dominated stage of the Universe evolution $\lambda \sim a^2$

Since ^λ may be associated with the homogeneity $\textbf{scale}, \textbf{asymptotic behaviour} \enskip \lambda \rightarrow 0 \enskip \textbf{when} \enskip a \rightarrow 0$ sunnorts the idea of the homogeneous Big Bang. **supports the idea of the homogeneous Big Bang.**

Conclusion

I

first-order scalar and vectorcosmological perturbations,produced by inhomogeneities in the discrete formof a system of separate point-like gravitating masses, are derived without any extra approximationsin addition to the weak gravitational field limit(no \textit{c}^{-1} series expansion, no "dictionaries");

obtained metric corrections are valid at all (subhorizon and super-horizon) scales and convergein all points except locations of sources (where Newtonian limits are reached), and their average values are zero(no first-order backreaction effects);

the Minkowski background limit and Newtonian cosmological approximation are particular cases;

the velocity-independent part of the scalar perturbation contains a sum of Yukawa potentials with the same finite time-dependent Yukawa interaction range, which may be connected with the scale of homogeneity, therebyexplaining existence of the largest cosmic structures;

the general Yukawa range definition is given for various extensions of the concordance model (nonzero spatial curvature, additional perfect fluids).

Whose law is the most appropriate for description of universal gravitation???

Geneva, Switzerland December 14, 2015 arXiv:1509.03835v1⁴³

Whose law is the most appropriate for description of universal gravitation???

Geneva, Switzerland December 14, 2015 arXiv:1509.03835v1⁴⁴

THANK YOU FOR ATTENTION !

https://www.flickr.com/photos/jinterwas

https://creativecommons.org/licenses/by/2.0/