Improved WIMP scattering limits from the LUX experiment

Wing To
LUX Collaboration
SLAC / Stanford University
TEXAS Symposium 2015
16 Dec 2015
Outline

- Large Underground Xenon (LUX)
- First Run3 Analysis (90 live-days)
- Improved Analysis of Run3 Data arxiv:1512.03506
- Preparation for Run4 (300 live-days) Data

Improved WIMP scattering limits from the LUX experiment

1Case Western Reserve University, Department of Physics, 10900 Euclid Ave, Cleveland, OH 44106, USA
2SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
Our Universe

- 4.9% Visible Matter
- 26.8% Dark Matter
- 68.3% Dark Energy

Weakly Interacting Massive Particles

- Weak! Interaction cross-section $\sigma < 10^{-45}\text{cm}^2$ @ 33 GeV mass
- Massive ~ 100 GeV range

WIMP – Xenon interaction

- WIMPs scatters off normal matter and imparts small amount of energy
- Excited atom releases this energy
 - Heat (Loss)
 - Scintillation Light (S1)
 - Ionization (S2)
Located 4850 ft (1.5km) underground in the Davis Cavern in Lead South Dakota

- Xenon at 165K
- Thermo Isotropy
- S2/S1 Reconstruct
- Extracts Electrons
- ~99% reflectivity VUV light
- Applied 180 V/cm drift field
- S1 Reconstruction

370 kg total xenon mass
250 kg active liquid xenon
118 kg fiducial mass
Dual Phase Xenon TPC

- Particle interacts with the Xenon and deposits ~ keV of Energy
- Prompt Scintillation Light (S1)
- Delay & Localized Charge on the top PMT array (S2)
- Drift time of the electrons

\[
E = \frac{1}{\mathcal{L}(E)} \cdot \left(\frac{S_1}{g_1} + \frac{S_2}{g_2} \right) \cdot W.
\]

- \(W = 13.7 \text{ eV} \)
- \(g_1 = \text{Light Collection} \)
- \(g_2 = \text{Extraction Eff, Light} \)
- \(\mathcal{L}(E) = \text{Lindhard Factor} \)

 Fraction of Energy Loss to Heat
Original Run3 Analysis

- Exclusion down ~ 6 GeV
- Energy threshold: 3 keV (slide2)
- 85.3 Live-days with 118 kg of fiducial mass (10k kg-days)
- $2 \leq S1 \leq 30$ Phe
- $S2 > 200$ Phe
- Event Radius < 18 cm
- 160 Events observed in data after selection cuts

First LUX Run3 Exclusion Limits

- LUX
- Xenon100 (225 days)
- Xenon100 (100 days)
- Edelweiss II
- ZEPLIN III
- CDMS II
PMT Pulses

- Vacuum UV correction between liquid and gas (A. Currie)
- Spike Counting for S1 Improved Pulse classification (S. Shaw)
- Fixed biases in pulse area measurements (T. Biesiadzinski, S. Shaw)
- Improved XY position Reconstruction (C. Silva)
- S2 energy from both Top and Bottom Array (C. Silva)
- Energy Calibration for Electronic Recoil Events (A. Dobi)
- Inclusion of low energy Nuclear Recoil Events (J. Verbus)
- Improve background models (B. Tennyson, C. Lee)
- Improved signal model full Energy -> S1 / S2 simulation (W. To)
- Created a new sensitivity and limits framework using Profile Likelihood Ratio (W. To)

Exclusion Curves
Data-Driven Energy Calibration

\[E = \frac{1}{\mathcal{L}(E)} \cdot \left(\frac{S_1}{g_1} + \frac{S_2}{g_2} \right) \cdot W. \]

\[S_2/E = \frac{n_e}{(n_e + n_\gamma)} \cdot \frac{g_2}{W} \quad \text{and} \]

\[S_1/E = \frac{n_\gamma}{(n_e + n_\gamma)} \cdot \frac{g_1}{W}, \]

- **X-intercept**
 - \(n_\gamma \rightarrow 0; \ S_2/E = g_2/W \)

- **Y-intercept**
 - \(n_e \rightarrow 0; \ S_1/E = g_1/W \)

\text{Run03 WS Doke Plot}

\[g_1 = 0.1167 \pm 0.003 \]
\[g_2 = 12.05 \pm 0.83 \]
Neutron DD Calibration

- Mono-energetic: 2.45 MeV fired into LUX
- Two line segments so the energy of the middle scatter is known

- \(Q_y \) = Charge Yield (S2 Size/ E)
- \(L_y \) = Light Yield (S1 Count /E)
- Fit to Lindhard/Berzukov model to get L(E)

\[
E = \frac{1}{L(E)} \cdot \left(\frac{S1}{q_1} + \frac{S2}{q_2} \right) \cdot W.
\]

Nuclear recoil energy (keV)
Background Model

- Detector Material: Gamma rays from Co-60, K-40, Tl-208, Bi-214
 - Global Fit to 3 MeV
 - Asymmetric source from top and bottom
- Internal Background (in Xenon): Ar-37, Kr-85m, Xe-127

Wall Background:
- Rn222-Pb206
- Occurs on the wall at 24.2-5 cm
- Resolution Leaks into below 18 cm
- Charge Loss
- Inclusion of Wall Bkg increase Fiducial Radius to 20 cm

R vs. S2 of Wall BG

S2 > 200 phd
LUX First Analysis Fiducial
r < 18 cm
C.Lee
• First Result used S1 as a proxy for Energy \{ \text{E(S1) = 6}^{\text{th}} \text{ Degree Poly} \} \\
• Noble Element Simulation Technique, M. Sydagzis et al, arxiv:1106.1613 \\
• Implement full NEST simulation in the sensitivity calculation \\
• NEST parameter are derived from DD-data \\
• All parameters including \(g_1, g_2 \) and \(L(E) \) are allow to vary in fits \\

\[
\log(S2) \text{ vs } S1, \text{ mWimp} = 3.500000\text{GeV}
\]

\[
\log(S2) \text{ vs } S1, \text{ mWimp} = 33.000000\text{GeV}
\]
• Limits calculation switched to physical quantity of cross-section instead of number of events
• Signal Model is generated on the fly
 • Parameters can be varied during fits
 • Profile over parameter space
• Nuisance Parameters
 • Both Signal Strength and Shape could be changed by the NPs
 • The kappa factor in L(E) is found to be dominated in Signal Strength
 • g2 is found to be dominated in Signal Shape.
 • kappa is allowed to for all mass points
 • g2 only floats above 4 GeV (huge increase in computing time)
• Each individual background contribution also have a NP
• The likelihood ratio is calculated with all NPs variation so we get a profile of the model parameters (PLR)
• “Goodness-Of-Fit” between Data and Background Model
Re-Analysis Dataset

- $1 \leq S1 \leq 50$ Phd
- $S2 > 150$ Phd
- Energy Threshold = 1.1 keV
- 10 additional days from dataset with tiny amount of Kr-83 from calibration
- 95 Live-days x 145 kg = 13800 kg-days (increase of 40%)
- Total of 591 events
• 95 Live days * 145 kg of Exposure
• Observed 591 Events
• Background Model Predicted: 589 Events
• Signal Model of various masses are included into the fit with Lindhard k and g2 allowed to float
• cross-section for all masses fit to < 1e-4 zb

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Constraint</th>
<th>Fit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lindhard k</td>
<td>0.174 ± 0.006</td>
<td>-</td>
</tr>
<tr>
<td>S_2 gain ratio: $g_{2,DD}/g_{2,WS}$</td>
<td>0.94 ± 0.04</td>
<td>-</td>
</tr>
<tr>
<td>Low-z-origin γ counts: $\mu_{\gamma,\text{bottom}}$</td>
<td>172 ± 74</td>
<td>165 ± 16</td>
</tr>
<tr>
<td>Other γ counts: $\mu_{\gamma,\text{rest}}$</td>
<td>247 ± 106</td>
<td>228 ± 19</td>
</tr>
<tr>
<td>β counts: μ_β</td>
<td>55 ± 22</td>
<td>84 ± 15</td>
</tr>
<tr>
<td>127Xe counts: μ_{Xe-127}</td>
<td>91 ± 27</td>
<td>78 ± 12</td>
</tr>
<tr>
<td>37Ar counts: μ_{Ar-37}</td>
<td>-</td>
<td>12 ± 8</td>
</tr>
<tr>
<td>Wall counts: μ_{wall}</td>
<td>24 ± 7</td>
<td>22 ± 4</td>
</tr>
</tbody>
</table>
New Exclusion Limits

Improved Low Mass Threshold lowered to 1.1keV

Boron-8 Solar Neutrino. Currently contributes to 0.1 Evt to our Bkg

33 GeV $\sigma = 4 \times 10^{-46}$ cm2

Increased exposure of 40% and better background / signal models
• LUX is currently taking data until the end of 2016
• Additional 300+ live-days of data
• Increase exposure by a factor of 4
• Preliminary estimate approximately factor of 2 improvement in WIMP sensitivity
• Improved Modeling of the E-field in LUX
• Better background models with full 3D information (φ)
• Improve treatments of nuisance parameters in order to allow variation at low masses
 • Large number of events needs to be generated currently
 • Avoid this by parameterizing s1 and s2
• Reanalysis of LUX first 90 live-days of data improved the sensitivity by factor of 2 at 33 GeV
• Pushed lowest mass limits from 6 GeV to 3.4 GeV
• Improvements from PMT Pulses to Final Limits calculation were implemented
• Additional calibration sources allowed us to use data drive methods for background and signal modeling
• Work is meant to be carried over to 300+90 live-days of data being collected until end of 2016
• PRD with analysis detail coming soon.
• SD and Axion limits are also coming out
Exclusion of CMSSM

SuperCDMS Soudan LT, 90% C.L.
XENON100, 2012, 225 live days (7650 kg-days), SI
LUX (2013) 85d 118kg (SI, 90% CL)
LUXRun3Reana2015 (SI, 90% CL)
Trotta et. al., 2008, CMSSM
Bayesian: 95% contour, SI

Cross-section [cm2] (normalised to nucleon)

WIMP Mass [GeV/c2]
More On VUV Photons

Single Photo-electron

![Graph showing single photo-electron distribution](image1)

- Photon \rightarrow PMT photocathode \rightarrow single electron
 - Except...
 - Xe scintillation: 175 nm (7.1 eV). Calibration LEDs: 470 nm (2.6 eV)
- Two photo-electrons about 20% of the time in Xe
 - phe (photoelectrons) \rightarrow phd (detected photons)
Spatial Uniformity
• Radial parametrization of the corrected Mercury radius vs. S2 size
Radial comparison data vs. wall model below NR mean

Counts / 0.1 cm

- *wall model*
- *data*
• 222Rn, 3.8 days, **alpha decaying** to...
• 218Po, 3.10 minutes, **alpha decaying** to...
• 214Pb, 26.8 minutes, **beta decaying** to...
• 214Bi, 19.9 minutes, beta decaying to...
• 214Po, 0.1643 ms, alpha decaying to...
• 210Pb, which has a much longer half-life of 22.3 years, beta decaying to...
• 210Bi, 5.013 days, beta decaying to...
• 210Po, 138.376 days, alpha decaying to...
• 206Pb, stable.