Millisecond pulsars: on their own, with a friend, or even two Jason Hessels U. of Amsterdam / ASTRON

UNIVERSITY OF AMSTERDAM 28th Texas Symposium - Geneva - 16/12/15

Ň

Outline

MSP = Millisecond Pulsar

- MSPs in the context of other pulsars
- Timing MSPs
- MSPs across the EM spectrum
- Pulsar triple system
- "Spiders" (black widows & redbacks)

MSPs in the context of other pulsars

MSP Formation

MSP Formation

LMXB (some IMXB) Radio (some also g-ray)

Alpar, Cheng, Ruderman & Shaham 1982

Rhadakrishnan & Srinivasan 1982

MSP Formation

Afternoon spoiler: this simple picture is getting complicated!

Explosion in Discovery Rate

43 Fermi targeted27 HTRU (Parkes)17 PALFA (Arecibo)16 Drift/CC (GBT)

103 total in 4 years

More Galactic MSPs than in GCs for the first time in a decade!

MSP Population

> 80% in binary; orbital eccentricity normally very small

(this is the "Binaries" session after all)

Freire (<u>http://www.naic.edu/~pfreire/GCpsr.html</u> NGC 1851A Ø **M28 C** \cap X Z NGC 6544B M28 D ØÓ M15 C ^{III} NGC 6441A Ø • Lots of eccentric Ο ØU centricity ۲ systems recently found NGC 6440B 0.5 in GCs. J1903+0327 🕅 ai \boxtimes \bigcirc L i L ØJ X **NGC 6440F** NGC 6539A \bigcirc **M5** B \bigcirc ad M3 D \bigcirc Ø **Eccentricity still NGC 6342A** (000) (0) (0) \bigcirc $10^{-\overline{3}}$ easily measurable 0.01 0.1Р ์ ร)

Connecting populations

Papitto et al. 2014

Some evidence that the tMSPs are faster spinners

The MSP Menagerie

See talk by Tauris

- Helium white dwarf.
- Carbon-oxygen white dwarf.
- Jupiter-mass companion (e.g. the "diamond planet").
- Bloated, post-main-sequence, (*non*)-degenerate companion (0.01 0.4 MSun).
- Solar-mass main sequence star (e.g. J1903+0327)
- Earth-mass planetary companions (e.g. B1257+12).
- Hierarchical triple systems (e.g. J0337+1715).
- Highly eccentric systems in GCs (e.g. J0514-4002 in NGC1851, e = 0.9!).
- MSPs in relativistic systems good for gravity tests.

The list is likely to continue increasing in diversity (MSP-MSP?; MSP-BH?; sub-MSP?)

Timing MSPs

"Pulsar Timing" Using pulsars as precision clocks

Record pulses

Average many pulses together

54255.1231254524233 54255.2643443523453 54255.3123524545899 54255.3513745623467 54255.4418456543355 54255.5001234234688

Measure the "times of arrival"

What can this teach us

6.2

4

66 198

 $\frac{50}{2} = 100$

126 630

111 1221

Account for each pulse; over years!

PSR J1012+5307: P = 0.005255749014115410 +/- 0.00000000000000015s

> 100 billion pulses in the last 15 years, and not a single rotation missed

Shapiro Delay

Saxton/NRAO

Shapiro Delay

Demorest et al. 2010

Ultra-dense matter

See talk yesterday by Watts

Neutron star equation-of-state

- 2MSun Pulsar Demorest, Pennucci, Ransom, Roberts & Hessels 2010, *Nature, 467, 1081*

716Hz Pulsar Hessels et al. 2006, *Science, 311, 1901*

Ultra-dense matter

See talk yesterday by Watts
Neutron star equation-of-state

- 2MSun Pulsar Demorest, Pennucci, Ransom, Roberts & Hessels 2010, *Nature, 467, 1081*

716Hz Pulsar Hessels et al. 2006, *Science, 311, 1901*

QCD phase diagram

MSPs across the EM spectrum

Gamma-selected radio MSPs

Ray et al. 2012

>60 as of the latest count!

Is gamma-ray emission dominated by pulsations?

(Almost) radio quiet MSPs

PSR J1311-3440, see also J2339-0533 (Romani et al.)

Discovery of "black widow" system through its optical companion

(Almost) radio quiet MSPs

Discovery of MSP first through its gamma-ray pulsations. Radio follow-up finds an almost undetectable radio pulsar.

LOFAR Millisecond Pulsars

The premier low-frequency sample

LOFAR Millisecond Pulsars

Kondratiev et al. 2015

Profile evolution related to compact magnetosperes?

Cyclic Spectroscopy

Horizontal bars indicate scattering time, T, as inferred from the diffractive bandwidth, $\Delta \nu_d$

Archibald et al. 2014

Cyclic Spectroscopy

Example dynamic spectrum

Smoothed to $\sim 2kHz$ resolution

Diffractive bandwidth vs. frequency

 $\Delta \nu_{\rm d} = \frac{1}{2\pi\tau}$

Solid line: best-fit power-law Dotted line: power-law of -4

Probes scattering in a previously unreachable regime Archibald et al. 2014

Pulsar triple system

A pulsar riddle

Ransom et al. 2014

A pulsar riddle

Ransom et al. 2014

Outer Orbit P_{orb}=327days M_{WD} = 0.41M_{Sun}

PSR J0337+1715 Triple System

Pulsar

Inner Orbit P_{orb}=1.6days M_{PSR} = 1.44M_{Sun} M_{WD} = 0.20M_{Sun}

Magnified

15x

39.2°

Orbital inclinations

"Young, hot"

White Dwarf

16 It-sec

Center of Mass 118 It-sec

472 It-sec

"Cool, old" White Dwarf

Figure credit: Jason Hessels

A pulsar riddle

Ransom et al. 2014

Alle rode meetpunten zijn van Westerbork!

A pulsar riddle

Ransom et al. 2014

J0337+I7I5 - Timing model

Parameter	Symbol	Value					
Fixed values							
Right ascension	RA	$03^h 37^m 43^s .82589(13)$					
Declination	Dec	$17^{\circ}15'14''.828(2)$					
Dispersion measure	DM	21.3162(3) pc cm ⁻³					
Solar system ephemeris		DE405					
Reference epoch	Reference epoch						
Observation span		MJD 55930.9 - 56436.5					
Number of TOAs		26280					
Weighted root-mean-squared residual		$1.34\mu\mathrm{s}$					
Fitted parameters							
Spin-down parameters							
Pulsar spin frequency	f	365.953363096(11) Hz					
Spin frequency derivative	\dot{f}	$-2.3658(12) imes 10^{-15} \text{ Hz s}^{-1}$					
Inner Keplerian parameters for pulsar orbit							
Semimajor axis projected along line of sight	$(a\sin i)_I$	1.21752844(4) lt-s					
Orbital period	$P_{b,I}$	1.629401788(5) d					
Eccentricity parameter $(e \sin \Omega)$	$\epsilon_{1,I}$	$6.8567(2) \times 10^{-4}$					
Eccentricity parameter $(e \cos \Omega)$	$\epsilon_{2,I}$	$-9.171(2) \times 10^{-5}$					
Time of ascending node	$t_{asc,I}$	MJD 55920.407717436(17)					
Outer Keplerian parameters for	centre of mass	of inner binary					
Semimajor axis projected along line of sight	$(a\sin i)_O$	74.6727101(8) lt-s					
Orbital period	$P_{b,O}$	327.257541(7) d					
Eccentricity parameter $(e \sin \Omega)$	$\epsilon_{1,O}$	$3.5186279(3) \times 10^{-2}$					
Eccentricity parameter $(e \cos \Omega)$	$\epsilon_{2,O}$	$-3.462131(11) \times 10^{-3}$					
Time of ascending node	tasc.O	MJD 56233.935815(7)					
Interaction parameters							
Semimajor axis projected in plane of sky	$(a\cos i)_I$	1.4900(5) lt-s					
Semimajor axis projected in plane of sky	$(a\cos i)_O$	91.42(4) lt-s					
Inner companion mass over pulsar mass	$q_I = m_{cI}/m_p$	0.13737(4)					
Difference in longs. of asc. nodes	δ_{Ω}	$2.7(6) \times 10^{-3}$ °					
Inferred or derived values							
Pulsar properties							
Pulsar period	P	2.73258863244(9) ms					
Pulsar period derivative	\dot{P}	$1.7666(9) \times 10^{-20}$					
Inferred surface dipole magnetic field	B	$2.2 \times 10^8 \text{ G}$					
Spin-down power	Ė	$3.4 imes 10^{34} \mathrm{~erg~s^{-1}}$					
Characteristic age	au	$2.5 imes 10^9$ y					
Orbital geometry							
Pulsar semimajor axis (inner)	a_I	1.9242(4) It-s					
Eccentricity (inner)	eI	$6.9178(2) \times 10^{-4}$					
Longitude of periastron (inner)	ω	97.6182(19) °					
Pulsar semimaior axis (outer)	ao	118.04(3) It-s					
Eccentricity (outer)	eo	$3.53561955(17) \times 10^{-2}$					
Longitude of periastron (outer)	ωο	95.619493(19) °					
Inclination of invariant plane	ĭ	39.243(11) °					
Inclination of inner orbit	i ı	39.254(10) °					
Angle between orbital planes	δ_i	$1.20(17) \times 10^{-2}$ °					
Angle between eccentricity vectors	$\delta_{\omega} \sim \omega_{O} - \omega_{I}$	-1.9987(19) °					
Masses							
Pulsar mass	m_{n}	$1.4378(13) M_{\odot}$					
Inner companion mass	m_{cI}	$0.19751(15) M_{\odot}$					
Outer companion mass	m_{cO}	$0.4101(3)~M_{\odot}$					

Model by Anne Archibald

Pulsar massa: I.4378(13) Mzon "Inner" WD massa: 0.19751(15) Mzon "Outer" WD massa: 0.4101(3) Mzon

> You are impressed by all these high-precision numbers

Was Einstein right? See talk by Kramer this morning

Strong Equivalence Principle

"Spiders" (black widows & redbacks)

MSP "Spiders"

See talks by Papitto, Ferrigno, Wadiasingh

Blame Mallory Roberts

'Black Widow' and 'Redback' Pulsar Binaries

So named because these pulsars are 'devouring' (ablating) their companions

Black widows: << 0.1M_{Sun} (semi) degenerate companion

Redbacks: ~ 0.2M_{Sun} non-degenerate companion

Black Widows vs. Redbacks

Black widows

- Mcomp < 0.1Msun
- ~10% eclipse fraction
- Less Roche-lobe filling?
- Less T0 wander?
 delta(T0) ~ I-I0s

Redbacks

- Mcomp > 0.1Msun
- ~50% eclipse fraction
- Completely Roche-lobe filling?
- More T0 wander? delta(T0) ~ 10-100s

Seems like we may have more types of eclipsing radio MSPs as well: ones earlier in the recycling process?

An Explosion of Spiders

7				Fermi
/	Blac	k Widows	Redbacks	
6				
5				
9				
4				
3				
2	BI957+20	2051-0827	J0610-2100 J	023+0038
1	Fruchter et al. 1988	Stappers et al. 1996	Burgay et al. 2006 Archib	oald et al. 2009
0				
-0-	1988 1990 1992 1994	1996 1998 2000	2002 2004 2006 2	2010 2012

Does not include all the (strange) systems in GCs

MSP Population Orbits

Porb vs. Comp. Mass

What are the evolutionary links, if any?

See talk by Thomas Tauris

Porb vs. Comp. Mass

Roberts

Hessels

MSP Eclipses

PSR J1023+0038

Pspin = 1.7ms Porb = 0.20d Mcomp = 0.13MSun

See talks by Amruta Jaodand and Kyle Parfrey

Archibald et al. 2015

Comparing T0 variations

Prager

Radio Pulsar State

- Observed radio/gammaray pulsar.
- Likely radio eclipses.
- Lots of orbital timing noise.
- Modulation of X-rays at orbital period (shock).

Disk State

- No visible radio pulsar (off?).
 Increased optical, X-ray, and gamma-ray brightness.
- Double peaked optical emission lines.
- Flat-spectrum radio continuum source (jet?).
- No X-ray orbital modulation.
- X-ray dropouts and flares.

"Normal MSPs" vs. Spiders

- Gravity tests
- EOS constraints

- Accretion physics
- Pulsar wind
- Particle acceleration
- Shocks
- MSP formation and evolution
- EOS constraints?
 - ••••

Conclusions

 As the number of known MSPs increases, so do the number of scientific applications. • The diversity of MSP systems is providing great puzzles in stellar evolution. Multi-wavelength observations are crucial for getting the most out of radio MSPs. • ...and I didn't even talk about the Fermi Galactic bulge GeV excess.