How to use geodetic VLBI to measure relativistic light deflection from extragalactic objects

Oleg Titov (Geoscience Australia)
Anastasiia Girdiuk (Vienna Technical University)
Gravitational delay (difference of two Shapiro delays) is linked to deflection angle

$$\tau_{GR} = \tau_{grav} + \tau_{coord} = \frac{2GM}{c^3} \ln \left| \frac{r_1}{r_2} \right| + \left(\frac{r_1 \cdot s}{r_2} \right) + \frac{(b \cdot s)}{c} \frac{2GM}{c^2 r} = \alpha \frac{b}{c} \sin \varphi \cos A$$
General relativity – light bending

Special expeditions to observe total Solar eclipses since 1919

Now VLBI is doing it every session!
Light deflection in VLBI

\[\alpha = \frac{4GM}{c^2 R} \]
\[\alpha = \frac{2GM}{c^2 R} \frac{\sin \theta}{1 - \cos \theta} \]

at the small angle approximation, Einstein (1915)

\[V(r) \sim \frac{1}{r} \quad \alpha \sim \text{ctg} \frac{\theta}{2} \]

For a radio source within 1° from Sun
Light deflection angle 0552+398

\[\alpha = \frac{2GM}{c^2 R} \frac{\sin \theta}{1 - \cos \theta} \]

Real data, 1991-2001, each session, each radio source
Deflection residuals \(0119+115\) 2012-2014

Residuals are positive at large elongation angles!
Deflection residuals $0119+115$ 2011-2014

\[\Delta\gamma = \Delta\alpha \frac{c^2 r}{GM} \frac{1 - \cos \theta}{\sin \theta} \]

Two estimates $\Delta\gamma = -27 +/\ -8$ and $-28 +/\ -5$ within 4 degrees from the anti Solar point.
Brane world gravity

Randall and Sundrum (hep-th 9906064, 1999); Rubakov, UFN, (2001)

\[V(r) = -\frac{G(4)}{r} \left(1 + \frac{\text{const}}{k^2 r^2}\right). \]

\[V(r) \sim \frac{1}{r^3} \]

\[\alpha \sim \text{ctg} \theta \]

For a radio source within 1° from Sun, magnitude is conditional
Expected change in coordinates

\[V(r) = -\frac{G(4)}{r} \left(1 + \frac{\text{const}}{k^2 r^2} \right). \]

\[\alpha \sim \cot \theta \]

0119+115, 2012-2014 (residuals)

Correction to right ascension
List of quasars within 0°.1 from ecliptic

<table>
<thead>
<tr>
<th>Quasar</th>
<th>Ecliptic Angle</th>
<th>Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0055+060</td>
<td>0°.075</td>
<td></td>
</tr>
<tr>
<td>0547+234</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0558+234</td>
<td>-0.023</td>
<td></td>
</tr>
<tr>
<td>0603+234</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>0723+219</td>
<td>-0.070</td>
<td></td>
</tr>
<tr>
<td>0725+219</td>
<td>-0.00187</td>
<td>7”</td>
</tr>
<tr>
<td>0741+214</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>0749+211</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td>0956+124</td>
<td>-0.095</td>
<td></td>
</tr>
<tr>
<td>1226-028</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>1346-109</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>1437-153</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>1907-224</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>2243-081</td>
<td>-0.065</td>
<td></td>
</tr>
<tr>
<td>2322-040</td>
<td>0°.008</td>
<td>~25”</td>
</tr>
</tbody>
</table>

11 Jan 2016
Secondary deflection angle (two telescopes)

\[\Delta \theta = \theta_2 - \theta_1 \sim b / r \sim 8'' \]

\[\alpha_1 = \frac{4GM}{c^2 R_1} \quad \alpha_2 = \frac{4GM}{c^2 R_2} \]

\[\alpha'' = \alpha_2 - \alpha_1 \sim \frac{4GMb}{c^2 R^2} \]

<table>
<thead>
<tr>
<th>R (km)</th>
<th>(\alpha)</th>
<th>(\alpha'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>700,000 (grazing light, 0°.25)</td>
<td>1°.75</td>
<td>0°.00125</td>
</tr>
<tr>
<td>2.8\cdot10^6 (1°)</td>
<td>0°.45</td>
<td>0°.00078</td>
</tr>
<tr>
<td>5.6\cdot10^6 (2°)</td>
<td>0°.22</td>
<td>0°.00019</td>
</tr>
<tr>
<td>15\cdot10^6 (5°)</td>
<td>0°.09</td>
<td>0°.00003</td>
</tr>
</tbody>
</table>

b=10000 km

Depends on baseline length!
Light deflection at two-telescope observations

\[\Delta \theta = \theta_2 - \theta_1 \sim b / r \sim 8'' \]

\[\alpha_1 = \frac{4GM}{c^2 R_1} \quad \alpha_2 = \frac{4GM}{c^2 R_2} \]

\[\alpha''' = \alpha_2 - \alpha_1 \sim \frac{2GMb}{c^2 R^2} \]

\[\alpha''' = \frac{2GMb}{c^2 R^2} \frac{\sin \varphi \cos 2A}{\cos A} \]

Each baseline produces own deflected image
Secondary deflection angle with space VLBI

\[\alpha = \frac{4GM}{c^2 R} \]

\[\alpha'' = \frac{2GMb \sin \varphi \cos 2A}{c^2 R^2 \cos A} \]

\(b, A, \varphi \) - variable

\(M = 10^{12} \) Solar Mass, \(b \sim 10^+ \) au, \(r \sim 1 \) Gpc
Light deflection at two-telescope observations

Distant galaxy with unknown mass is observed with several very long baselines

Remote mass could be estimated instantly

\[\alpha'' = \frac{2GMb \sin \varphi \cos 2A}{c^2 R^2 \cos A} \]
Any Questions?

Thank you for your attention!