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FACTS 

- The current expansion of the Universe is accelerated 

- The acceleration started “recently” 

- General Relativity mathematically can explain why: cosmological constant 

- Λ is way too small to make sense in QFT 

WAYS OUT 

- Acceleration is just a local effect 

- Acceleration is due to “exotic” d.o.f. in the matter sector (quintessence, etc) 

- Standard General Relativity does not work at the largest scales ( f(R), etc) 

- There are fundamental, global fields to take in account beyond gravity 
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THE PROPOSAL 

  
“Accelerated expansion corresponds to the only stable, asymptotic fixed 
point of the Yang-Mills Higgs Einstein equations on a homogeneous and 
isotropic cosmological spacetime” 
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“Higgs Dark Energy”  
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“The dark aftermath of Higgs inflation”  
M. Rinaldi, Eur.Phys.J.Plus 129 (2014) 56  
e-Print: arXiv:1309.7332 
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MOTIVATIONS & HISTORY (1) 

“Spintessence” (Boyle et al., PLB 2002).  

Complex scalar field in U(1) potential: the U(1) charge, rescaled by 
cosmological expansion, acts as a time-dependent cosmological constant. 
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tion curves and to provide the majority of the matter
in galaxy clusters. Leading candidates for this dark
matter include collisionless particles such as super-
symmetric particles [5] and the axion [6]. However,
numerical simulations of structure formation with
collisionless dark matter seem to indicate more galac-
tic substructure than is observed [7], a discrepancy that
has led some to postulate that the dark matter might
possess a self-interaction [8] or consist of extremely
low-mass particles (“fuzzy” dark matter) [9].
In this Letter, we consider a new class of models

for dark matter and dark energy. We investigate the
behavior of a complex scalar field that is spinning in a
circular orbit in a U(1)-symmetric potential V (φ) =
V (|φ|), a monotonically increasing function of |φ|.
As the Universe expands, the radius of this orbit,
and thus the potential- and kinetic-energy densities
decrease. It is the internal-angular-momentum barrier,
not expansion friction, that prevents the field from
falling directly to the minimum of the potential.
Unlike quintessence models, spintessence allows |φ|
to change slowly even if the time derivative of φ
is large. As well, the growth of perturbations in
spintessence differs from those in quintessence or cold
dark matter.
Below, we discuss the evolution of spintessence

and the growth of perturbations, working through
some simple illustrative examples. We conclude with
some remarks about the viability of spintessence
models with global symmetries other than U(1) or
in the presence of broken global symmetry, and we
mention possible links to quintessence, baryogenesis,
and other areas of particle physics and early-Universe
cosmology.

2. Spintessence

We can decompose a complex scalar field into two
real fields: φ(x, t) = φ1(x, t) + iφ2(x, t) ≡ R(x, t) ×
exp[iΘ(x, t)]. First suppose that φ is homogeneous,
lives in Minkowski space, and has a U(1)-symmetric
potential-energy density V = V (|φ|) that is a monoton-
ically increasing function of |φ|. Then its equations of
motion are equivalent to those of a classical particle
moving in a two-dimensional central potential V (R).
The simplest non-trivial solutions are those in which
the field moves in a circular orbit, φ(t) = Reiωt , with

R and ω constants that satisfy Rω2 = V ′(R) so the
centripetal acceleration balances the radial force.
In an expanding Universe, conservation of the

global-charge currentmeans Θ̇ = Q/a3R2 whereQ is
a constant associated with the total charge, and a(t) is
the cosmological scale factor. With regards to the field
dynamics, the charge introduces a secular driving-term
into the equation-of-motion for R,

(1)R̈ + 3HṘ + V ′(R) = Q2

a6R3
,

whereH = ȧ/a. If the spin frequency is high, Θ̇ ≫ H ,
we may expect the rotation to dominate, supporting
the field against radial infall. In this rapidly-spinning
approximation, the time evolution of R is then deter-
mined from V ′(R) = Q2a−6R−3. From this we find
that the potential must satisfy (d/dR)[R3V ′(R)] > 0
if it is to be steep enough to confine the field to a circu-
lar orbit as the Universe expands. For instance, with a
quadratic potential, R ∝ a−3/2 in a matter-dominated
epoch so that the radial kinetic energy rapidly decays
Ṙ2 ∝ a−6, leaving energy density and pressure

ρ = 1
2
(

Ṙ2 + R2Θ̇2) + V,

(2)p = 1
2
(

Ṙ2 + R2Θ̇2) − V,

with R2Θ̇2 = 2V ∝ a−3, and an equation-of-state
w = 0. For such rapidly spinning fields, the equation-
of-state parameter is

(3)w(R) ≈ RV ′(R) − 2V (R)

RV ′(R) + 2V (R)
.

However, solutions with an arbitrary constant equation-
of-state, for which each term in ρ,p above decays as
∝ a−3(1+w), are not possible owing to the conserved
charge.

3. Growth of perturbations

We now consider the growth of perturbations in
spintessence. While the perturbations in a spinning
field have been considered (for different purposes) in
Refs. [10,11] for the special case of quadratic and
quartic potentials, here we generalize their analysis to
arbitrary potentials. We start with the spacetime line

Q depends on the phase: slow spinning gives 
 quintessence, large spinning gives spintessence. 

The model is very unstable and decays into  
Q-balls (à la Coleman) except for designer 
(unnatural) potentials.  

It gives an interesting dark matter candidate. 



MOTIVATIONS & HISTORY (2) 

“Higgs inflation” (Bezrukov et al., PLB 2008). 
Jordan frame Lagrangian with non-minimally coupled Higgs doublet 

Einstein frame and unitary gauge: flat potential, good inflationary dynamics. 

Unitary gauge has been chosen = Yang-Mills fields neglected  
Kaiser et al. studied multifield dynamics for the Higgs in this context. 

Ignoring YM is OK during inflation … but what happens at low energy? 

M. Rinaldi - Trento U.
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The Standard Model Higgs boson as the inflaton
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a Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
b Institute for Nuclear Research of Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7a, Moscow 117312, Russia

Abstract

We argue that the Higgs boson of the Standard Model can lead to inflation and produce cosmological perturbations in accordance
with observations. An essential requirement is the non-minimal coupling of the Higgs scalar field to gravity; no new particle
besides already present in the electroweak theory is required.
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1. Introduction

The fact that our universe is almost flat, homoge-
neous and isotropic is often considered as a strong
indication that the Standard Model (SM) of elemen-
tary particles is not complete. Indeed, these puzzles,
together with the problem of generation of (almost)
scale invariant spectrum of perturbations, necessary for
structure formation, are most elegantly solved by in-
flation [1, 2, 3, 4, 5, 6]. The majority of present mod-
els of inflation require an introduction of an additional
scalar—the “inflaton”. This hypothetical particle may
appear in a natural or not so natural way in different
extensions of the SM, involving Grand Unified The-
ories (GUTs), supersymmetry, string theory, extra di-
mensions, etc. Inflaton properties are constrained by the
observations of fluctuations of the Cosmic Microwave
Background (CMB) and the matter distribution in the
universe. Though the mass and the interaction of the in-
flaton with matter fields are not fixed, the well known
considerations prefer a heavy scalar field with a mass
∼ 1013 GeV and extremely small self-interacting quar-

Email addresses: Fedor.Bezrukov@epfl.ch (Fedor
Bezrukov), Mikhail.Shaposhnikov@epfl.ch (Mikhail
Shaposhnikov).

tic coupling constant λ ∼ 10−13 [7]. This value of the
mass is close to the GUT scale, which is often con-
sidered as an argument in favour of existence of new
physics between the electroweak and Planck scales.

The aim of the present Letter is to demonstrate that
the SM itself can give rise to inflation. The spectral
index and the amplitude of tensor perturbations can be
predicted and be used to distinguish this possibility from
other models for inflation; these parameters for the SM
fall within the 1σ confidence contours of the WMAP-3
observations [8].

To explain our main idea, consider Lagrangian of the
SM non-minimally coupled to gravity,

Ltot = LSM −
M2

2
R − ξH†HR , (1)

where LSM is the SM part, M is some mass parameter,
R is the scalar curvature, H is the Higgs field, and ξ is an
unknown constant to be fixed later. 1 The third term in
(1) is in fact required by the renormalization properties
of the scalar field in a curved space-time background
[9]. If ξ = 0, the coupling of the Higgs field to gravity
is said to be “minimal”. Then M can be identified with
Planck scale MP related to the Newton’s constant as

1 In our notations the conformal coupling is ξ = −1/6.
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including   
Yang-Mills 
fields! 

MP = (8πGN )−1/2 = 2.4 × 1018 GeV. This model
has “good” particle physics phenomenology but gives
“bad” inflation since the self-coupling of the Higgs field
is too large and matter fluctuations are many orders of
magnitude larger than those observed. Another extreme
is to put M to zero and consider the “induced” gravity
[10, 11, 12, 13, 14], in which the electroweak symmetry
breaking generates the Planck mass [15, 16, 17]. This
happens if

√
ξ ∼ 1/(

√
GNMW ) ∼ 1017, whereMW ∼

100 GeV is the electroweak scale. This model may give
“good” inflation [12, 13, 14, 18, 19, 20] even if the
scalar self-coupling is of the order of one, but most
probably fails to describe particle physics experiments.
Indeed, the Higgs field in this case almost completely
decouples from other fields of the SM 2 [15, 16, 17],
which corresponds formally to the infinite Higgs mass
mH . This is in conflict with the precision tests of the
electroweak theory which tell that mH must be below
285 GeV [21] or even 200GeV [22] if less conservative
point of view is taken.
These arguments indicate that there may exist some

intermediate choice of M and ξ which is “good” for
particle physics and for inflation at the same time. In-
deed, if the parameter ξ is sufficiently small,

√
ξ ≪

1017, we are very far from the regime of induced grav-
ity and the low energy limit of the theory (1) is just
the SM with the usual Higgs boson. At the same time,
if ξ is sufficiently large, ξ ≫ 1, the scalar field be-
haviour, relevant for chaotic inflation scenario [7], dras-
tically changes, and successful inflation becomes pos-
sible. We should note, that models of chaotic inflation
with both nonzero M and ξ were considered in litera-
ture [12, 14, 19, 20, 23, 24, 25], but in the context of
either GUT or with an additional inflaton having noth-
ing to do with the Higgs field of the Standard Model.
The Letter is organised as follows. We start from dis-

cussion of inflation in the model, and use the slow-roll
approximation to find the perturbation spectra parame-
ters. Then we will argue in Section 3 that quantum cor-
rections are unlikely to spoil the classical analysis we
used in Section 2. We conclude in Section 4.

2. Inflation and CMB fluctuations

Let us consider the scalar sector of the Standard
Model, coupled to gravity in a non-minimal way. We
will use the unitary gauge H = h/

√
2 and neglect all

gauge interactions for the time being, they will be dis-

2 This can be seen most easily by rewriting the Lagrangian (1),
given in the Jordan frame, to the Einstein frame, see also below.

cussed later in Section 3. Then the Lagrangian has the
form:

SJ =

∫

d4x
√
−g

{

−
M2 + ξh2

2
R

+
∂µh∂µh

2
−

λ

4

(

h2 − v2
)2

}

.

(2)

This Lagrangian has been studied in detail in many pa-
pers on inflation [14, 19, 20, 24], we will reproduce here
the main results of [14, 19]. To simplify the formulae,
we will consider only ξ in the region 1 ≪

√
ξ ≪ 1017,

in which M ≃ MP with very good accuracy.
It is possible to get rid of the non-minimal coupling

to gravity by making the conformal transformation from
the Jordan frame to the Einstein frame

ĝµν = Ω2gµν , Ω2 = 1 +
ξh2

M2
P

. (3)

This transformation leads to a non-minimal kinetic term
for the Higgs field. So, it is convenient to make the
change to the new scalar field χ with

dχ

dh
=

√

Ω2 + 6ξ2h2/M2
P

Ω4
. (4)

Finally, the action in the Einstein frame is

SE =

∫

d4x
√

−ĝ

{

−
M2

P

2
R̂ +

∂µχ∂µχ

2
− U(χ)

}

, (5)

where R̂ is calculated using the metric ĝµν and the
potential is

U(χ) =
1

Ω(χ)4
λ

4

(

h(χ)2 − v2
)2

. (6)

For small field values h ≃ χ and Ω2 ≃ 1, so the poten-
tial for the field χ is the same as that for the initial Higgs
field. However, for large values of h ≫ MP /

√
ξ (or

χ ≫
√

6MP ) the situation changes a lot. In this limit

h ≃
MP
√

ξ
exp

(

χ
√

6MP

)

. (7)

This means that the potential for the Higgs field is ex-
ponentially flat and has the form

U(χ) =
λM4

P

4ξ2

(

1 + exp

(

−
2χ

√
6MP

))−2

. (8)

The full effective potential in the Einstein frame is pre-
sented in Fig. 1. It is the flatness of the potential at
χ ≫ MP which makes the successful (chaotic) infla-
tion possible.
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MOTIVATIONS & HISTORY (3) 

Higgs inflation model rewritten: 

At low energy Jordan frame  ≃  Einstein frame: 

The question is whether in this regime the classical dynamics  
is affected by Gauge Fields + Higgs complex multiplet. 
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Higgs Dark Energy 3

reads
LJp
g
=

✓
M2

p

2
+ ⇠H†H

◆
R� (DµH)†(DµH)� 1

4
F 2 � V (H†H), (1)

where H is the complex Higgs doublet, Mp is the Planck mass, V is the usual “mexican

hat” potential V = (�/4)
�H†H� v2

�2
, Dµ are the gauge covariant derivatives, and F a

µ⌫

is the gauge field strength. We now apply the conformal rescaling

gµ⌫ ! ⌦2gµ⌫ , ⌦2 = 1 +
2⇠H†H
M2

p

, (2)

we neglect the gauge fields, and we impose the unitary gauge so that H is replaced by

the single real scalar field h. Then, the rescaled potential ⌦�4V is nearly flat in the

regime ⇠h2 � M2
p (which is not planckian if ⇠ is su�ciently large) and it acts as an

e↵ective cosmological constant for a period of inflation su�ciently long to cope with

the latest observations [2]. The inflationary slow-roll parameters turn out to be directly

related to ⇠ and, from their measured values, one finds that ⇠ ⇠ 49000
p
�, where � is

the quartic self-interacting coupling constant of the Higgs field.

Now, let us look at the gauge fields. Since the Einstein equations are diagonal in

an isotropic Universe, the o↵-diagonal terms of the energy momentum tensor associated

to the gauge fields must vanish. The only way to achieve this is to impose the following

gauge

Ab
0 = 0, Ab

i = �bi f(t), (3)

where b is the gauge index while i is the spatial one. The function f(t) represents the

only degree of freedom allowed from the gauge sector, compatible with the symmetries

of the spacetime metric. With this choice, the energy momentum tensor is diagonal by

construction [7]-[11].

We now consider the low-energy limit, when ⌦2 ⇠ 1 and the Jordan frame becomes

indistinguishable from the Einstein frame, so the Lagrangian (1) reads

LEp
g
' M2

p

2
R� (DµH)†(DµH)� 1

4
F 2 � V (H†H) . (4)

With the gauge (3) and the metric

ds2 = �N2(t)dt2 + a(t)2d~x2 , (5)

we find that the Yang-Mills sector reduces to

�1

4
F 2 =

3ḟ 2

2N2a2
� 3f 4

4a4
, (6)

while the temporal gauge Ab
0 = 0 implies that (DµH)†(DµH) ! �N�2(Ḣ†)(Ḣ). By

variation of the fields, we derive the equations of motion in the usual way and we find

that the function f(t) defined in (3) satisfies the simple equation f 4 + 2a2ḟ 2 = Kf =

const. As a result, the Friedmann equations are

Ḣ = � 1

2M2
p


Ḣ†Ḣ +

Kf

a4
+ ⇢(1 + !)

�
, (7)

H2 =
1

3M2
p


1

2
Ḣ†Ḣ + V +

3Kf

4a4
+ ⇢

�
, (8)
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THE FULL MODEL 

Full Einstein Yang-Mills + Higgs + matter fluid action: 

where: 

Lm = perfect fluid Lagrangian (cold dark matter + radiation) 

We choose a SO(3) representation and we impose isotropy and homogeneity: 
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cosmological isotropic and homogeneous background. We also choose the representation
SO(3), instead of SU(2) as we did in [16], mainly to assess whether the late acceleration is
some sort of gauge artefact or not. In fact, it is not, the acceleration is real and, as we will
shortly see, it corresponds to the only stable fixed point of the system of equations.

One of the conceptual advantages of this model is that it requires degrees of freedom
whose dynamics is similar to the one of the standard model (SM). Therefore, there is no
need to modify gravity or to introduce scalar fields with designer potentials that are quite
unnatural in the realm of particle physics. Here, the standard “Mexican hat” potential,
analogous to the one of the SM Higgs field, is su�cient to lead to a final accelerated phase.
However, as we will show, since there are no symmetry breaking e↵ects, the shape of the
potential can be relaxed to be some generic quartic potential. As already noted in [16], the
Mexican hat potential does not o↵er a “slow-roll” phase to the dynamics of the Higgs, it
is simply way too steep to do that. However, there is another dynamical regime, dubbed
“ultra-slow roll” in [16], which is related to the kinetic energy of the Higgs phases and can
explain the late-time domination of dark energy. In fact, the multifield dynamics of the Higgs
components modifies the Klein-Gordon equation in such a way that it prevents the Higgs field
to reach its vacuum expectation value in a finite time. Thus, only in the infinite future the
potential e↵ectively vanish and the Higgs becomes constant. In the meanwhile, the potential
behaves as a very slowly varying e↵ective cosmological constant equal to the square of the
displacement of the Higgs field from its vacuum. In the present paper, we will see that the
same mechanism is at work in the SO(3) representation, provided we keep account of the
coupling between the Higgs triplet and the gauge fields.
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where, from now on, �2 ⌘ �a�a. The value of the vacuum term �2
0 it is not known but, as

we will see below, this is not really relevant for our purposes. We stress once more that we
are not identifying this potential with the SM potential, we just take it as a template for our
investigations.

We assume that the metric of spacetime is isotropic and homogeneous, namely

ds2 = �N2(t)dt2 + a2(t)�ijdx
idxj . (2.5)

This implies that the symmetry of spacetime “overrides” the gauge symmetry, reducing the
e↵ective degrees of freedom of the gauge field to just one, according to [27, 28]

Aa
0 = 0 , Aa

i = f(t)�ai . (2.6)

This choice guarantees that isotropy and homogeneity of space-time are preserved. Similar
considerations work for static spherically symmetric solutions of Yang-Mills theories [29–31].

With the constraint (2.6) we have

F aµ⌫F a
µ⌫ = 6

 
g2f4

a4
� ḟ2

N2a2

!
, (2.7)

and

(Dµ�
a)(Dµ�a) = � �̇2

N2
+

2g2f2�2

a2
, (2.8)

where the dot stands for a derivative with respect to t and �̇2 ⌘ �̇a�̇a

We now replace these expressions into the Lagrangian (2.1), we work out the equations
of motion by variation of the fields N , a, f , and �a, and we set N(t) = 1 at the end. The
Friedmann equations then read

H2 =
1

3M2

"
3ḟ2
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, (2.10)

where H = d ln a/dt and matter and radiation densities satisfy respectively the equations

⇢̇m = �3H⇢m , ⇢̇r = �4H⇢r . (2.11)

The system is implemented by the equation for the gauge field degree of freedom

f̈ +Hḟ +
2g2f3

a2
+

2g2f�2

3
= 0 , (2.12)

and by the Klein-Gordon equations for each component of �a

�̈a + 3H�̇a +
2g2f2�a

a2
+ ��a(�2 � �2

0) = 0 , a = 1, 2, 3 . (2.13)

As anticipated in the introduction, and similarly to what happens in the case studied in [16],
�2
0 cannot be an exact solution of the last equation, unless f = 0 or g = 0 or �0 = 0. In
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Ḣ = � 1

2M2

"
2ḟ2
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cosmological isotropic and homogeneous background. We also choose the representation
SO(3), instead of SU(2) as we did in [16], mainly to assess whether the late acceleration is
some sort of gauge artefact or not. In fact, it is not, the acceleration is real and, as we will
shortly see, it corresponds to the only stable fixed point of the system of equations.

One of the conceptual advantages of this model is that it requires degrees of freedom
whose dynamics is similar to the one of the standard model (SM). Therefore, there is no
need to modify gravity or to introduce scalar fields with designer potentials that are quite
unnatural in the realm of particle physics. Here, the standard “Mexican hat” potential,
analogous to the one of the SM Higgs field, is su�cient to lead to a final accelerated phase.
However, as we will show, since there are no symmetry breaking e↵ects, the shape of the
potential can be relaxed to be some generic quartic potential. As already noted in [16], the
Mexican hat potential does not o↵er a “slow-roll” phase to the dynamics of the Higgs, it
is simply way too steep to do that. However, there is another dynamical regime, dubbed
“ultra-slow roll” in [16], which is related to the kinetic energy of the Higgs phases and can
explain the late-time domination of dark energy. In fact, the multifield dynamics of the Higgs
components modifies the Klein-Gordon equation in such a way that it prevents the Higgs field
to reach its vacuum expectation value in a finite time. Thus, only in the infinite future the
potential e↵ectively vanish and the Higgs becomes constant. In the meanwhile, the potential
behaves as a very slowly varying e↵ective cosmological constant equal to the square of the
displacement of the Higgs field from its vacuum. In the present paper, we will see that the
same mechanism is at work in the SO(3) representation, provided we keep account of the
coupling between the Higgs triplet and the gauge fields.

The plan of the paper is the following. In the next section we display the action and the
equations of motion that will be studied as a dynamical system in section III. In section IV
we solve numerically the system for realistic initial conditions and we show that dark energy
can be sourced by the dynamics of the EYMH equations. We conclude in section V with
some considerations.

2 EYMH equations in FLRW spacetime

Let us begin by considering the equations of motion obtained from the Lagrangian

L =
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is the covariant derivative with the coupling constant g. The term Lm denotes the standard
Lagrangian of radiation and matter fields in the form of perfect fluids. We choose the
representation SO(3) so latin indices run over (1, 2, 3) and summation is understood. As for
the potential, we choose the standard “Mexican hat” profile
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�
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�2
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where, from now on, �2 ⌘ �a�a. The value of the vacuum term �2
0 it is not known but, as

we will see below, this is not really relevant for our purposes. We stress once more that we
are not identifying this potential with the SM potential, we just take it as a template for our
investigations.

We assume that the metric of spacetime is isotropic and homogeneous, namely

ds2 = �N2(t)dt2 + a2(t)�ijdx
idxj . (2.5)

This implies that the symmetry of spacetime “overrides” the gauge symmetry, reducing the
e↵ective degrees of freedom of the gauge field to just one, according to [27, 28]

Aa
0 = 0 , Aa

i = f(t)�ai . (2.6)

This choice guarantees that isotropy and homogeneity of space-time are preserved. Similar
considerations work for static spherically symmetric solutions of Yang-Mills theories [29–31].

With the constraint (2.6) we have

F aµ⌫F a
µ⌫ = 6

 
g2f4

a4
� ḟ2

N2a2

!
, (2.7)

and

(Dµ�
a)(Dµ�a) = � �̇2

N2
+

2g2f2�2

a2
, (2.8)

where the dot stands for a derivative with respect to t and �̇2 ⌘ �̇a�̇a

We now replace these expressions into the Lagrangian (2.1), we work out the equations
of motion by variation of the fields N , a, f , and �a, and we set N(t) = 1 at the end. The
Friedmann equations then read

H2 =
1

3M2

"
3ḟ2

2a2
+

3g2f4

2a4
+

�̇2

2
+

g2f2�2

a2
+ V + ⇢m + ⇢r

#
, (2.9)

Ḣ = � 1

2M2

"
2ḟ2

a2
+

2g2f4

a4
+ �̇2 +

2g2f2�2

3a2
+ ⇢m +

4⇢r
3

#
, (2.10)

where H = d ln a/dt and matter and radiation densities satisfy respectively the equations

⇢̇m = �3H⇢m , ⇢̇r = �4H⇢r . (2.11)

The system is implemented by the equation for the gauge field degree of freedom

f̈ +Hḟ +
2g2f3

a2
+

2g2f�2

3
= 0 , (2.12)

and by the Klein-Gordon equations for each component of �a

�̈a + 3H�̇a +
2g2f2�a

a2
+ ��a(�2 � �2

0) = 0 , a = 1, 2, 3 . (2.13)

As anticipated in the introduction, and similarly to what happens in the case studied in [16],
�2
0 cannot be an exact solution of the last equation, unless f = 0 or g = 0 or �0 = 0. In
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3ḟ2

2a2
+

3g2f4

2a4
+

�̇2

2
+

g2f2�2

a2
+ V + ⇢m + ⇢r

#
, (2.9)
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cosmological isotropic and homogeneous background. We also choose the representation
SO(3), instead of SU(2) as we did in [16], mainly to assess whether the late acceleration is
some sort of gauge artefact or not. In fact, it is not, the acceleration is real and, as we will
shortly see, it corresponds to the only stable fixed point of the system of equations.

One of the conceptual advantages of this model is that it requires degrees of freedom
whose dynamics is similar to the one of the standard model (SM). Therefore, there is no
need to modify gravity or to introduce scalar fields with designer potentials that are quite
unnatural in the realm of particle physics. Here, the standard “Mexican hat” potential,
analogous to the one of the SM Higgs field, is su�cient to lead to a final accelerated phase.
However, as we will show, since there are no symmetry breaking e↵ects, the shape of the
potential can be relaxed to be some generic quartic potential. As already noted in [16], the
Mexican hat potential does not o↵er a “slow-roll” phase to the dynamics of the Higgs, it
is simply way too steep to do that. However, there is another dynamical regime, dubbed
“ultra-slow roll” in [16], which is related to the kinetic energy of the Higgs phases and can
explain the late-time domination of dark energy. In fact, the multifield dynamics of the Higgs
components modifies the Klein-Gordon equation in such a way that it prevents the Higgs field
to reach its vacuum expectation value in a finite time. Thus, only in the infinite future the
potential e↵ectively vanish and the Higgs becomes constant. In the meanwhile, the potential
behaves as a very slowly varying e↵ective cosmological constant equal to the square of the
displacement of the Higgs field from its vacuum. In the present paper, we will see that the
same mechanism is at work in the SO(3) representation, provided we keep account of the
coupling between the Higgs triplet and the gauge fields.

The plan of the paper is the following. In the next section we display the action and the
equations of motion that will be studied as a dynamical system in section III. In section IV
we solve numerically the system for realistic initial conditions and we show that dark energy
can be sourced by the dynamics of the EYMH equations. We conclude in section V with
some considerations.

2 EYMH equations in FLRW spacetime

Let us begin by considering the equations of motion obtained from the Lagrangian

L =
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and
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is the covariant derivative with the coupling constant g. The term Lm denotes the standard
Lagrangian of radiation and matter fields in the form of perfect fluids. We choose the
representation SO(3) so latin indices run over (1, 2, 3) and summation is understood. As for
the potential, we choose the standard “Mexican hat” profile

V =
�

4

�
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0

�2
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DYNAMICAL SYSTEM ANALYSIS (1)  

Define the new dimensionless variables ( ‘ =  derivative wrt N = ln a) : 

Deceleration parameter and effective equation of state: 

Energy densities: 
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principle, however, the condition �2 = �2
0 can be achieved in the infinite future, if a diverges

but f does not. As already explained in ref. [16], an eventual late-time dynamics, dominated
by a slowly varying e↵ective cosmological constant, cannot be described by the standard
slow-roll condition (in fact V �1dV/d� diverges in the large N -limit) but rather by a “ultra
slow-roll” regime, where both �̈ and �̇ can be neglected in eq. (2.13), while the last two
terms take over and yields a secular variation of the potential.

This interpretation is further supported by noting that the right hand side of eq. (2.10)
is negative definite, hence an exact de Sitter-like solution, with H = const, is not allowed.
However, one can look for asymptotic solutions characterised by H = const in the infinite
future, with a ! 1 and the Higgs field settled at the value �2 = �2

0 so that its time derivative
vanishes.

We now consolidate these qualitative discussions by studying the system of equations
and its equilibrium points.

3 Dynamical system analysis

A very e�cient way to study systems of equations as the one in the previous section, especially
in the context of dark energy, is to map it into a closed system of first-order di↵erential
equations by defining a new set of dimensionless variables [1]. This technique is also ideal
for numerical treatment of the equations. We choose the following variables

x =
f 0

p
2aM

, y =
gf2

p
2MHa2

, v =
1

MH

r
V

3
, r =

1

MH

r
⇢r
3
, (3.1)

l =

p
2Ma

f
, wi =

gf�i

p
3MaH

, zi =
(�i)0p
6M

, i = 1, 2, 3 ,

where we introduced the derivative with respect to the e-folding number N = ln a, denoted
by a prime. The conversion between time derivative and N -derivative is Ẋ = HX 0 for any
function of time X.

The deceleration parameter, defined by q = �1 � Ḣ/H2 ⌘ �1 � H 0/H, indicates
whether the expansion of the Universe is accelerated or not. When only one source of matter
is present q is related to the equation of state parameter w by the equation q = (1 + 3!)/2:
whenever q < 0 (! > �1/3) the expansion is accelerated. In our case, the acceleration is a
combined e↵ect of the gauge and the Higgs fields, therefore define an e↵ective equation of
state parameter !e↵ such that q = (1 + 3!e↵)/2. By using the Friedmann equations and the
variables above we find that

q =
1

2
(1 + x2 + y2 + r2 � 3v2 + 3z2 � w2) , (3.2)

where we used the short-hand notation

z2 ⌘ (z1)
2 + (z2)

2 + (z3)
2 , w2 ⌘ (w1)

2 + (w2)
2 + (w3)

2 . (3.3)

With these expressions, eq. (2.9) can be written as the constraint

⌦m ⌘ ⇢m
3M2H2

= 1� (x2 + y2 + z2 + w2 + v2 + r2) , (3.4)
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in terms of the matter density ⌦m. Analogously, we can define the densities of radiation and
dark energy respectively as

⌦r = r2 , (3.5)

⌦de = x2 + y2 + z2 + w2 + v2 , (3.6)

so that

1 = ⌦de + ⌦r + ⌦m . (3.7)

By di↵erentiating with respect to N each of the variables (3.1), and by using the equa-
tions (2.11)–(2.13), we find a closed system of eleven first-order di↵erential equations, given by

l0 = l(1� lx) , (3.8)

x0 = (q � 1)x� l(w2 + 2y2) ,

y0 = y(q � 1 + 2xl) ,

r0 = (q � 1)r ,

v0 = v(q + 1) + ↵l(w1z1 + w2z2 + w3z3) ,

w0
i = wi(q + lx) +

p
2lyzi , i = 1, 2, 3 ,

z0i = (q � 2)zi � lwi(
p
2y + ↵v) , i = 1, 2, 3 ,

where ↵ =
p
3�/g is a dimensionless constant whose value will be discussed below.

Before solving numerically the system, it is crucial to find the equilibrium points and
to study their stability. The system has an infinite number of fixed points that, however,
correspond to a discrete and finite set of values for the deceleration parameter, namely
q = 2, 1, 1/2, 0,�1. We now examine each family of equilibria.

q = 2: in this case the set of fixed points is defined by

z2 = 1 , x = 0 , y = 0 , v = 0 , r = 0 , l = 0 , wi = 0 , i = 1, 2, 3 .

Physically, this solution corresponds to f = 0 and V = 0, which means that the Higgs field
takes its vacuum value �2 = �2

0 on the fixed point. By computing the Jacobian we find that
the eigenvalues are all real but some of them are vanishing thus the equilibrium points are
non-hyperbolic and numerical methods are necessary to fully assess the stability. In fact, the
numerical solution (see below) shows that this is an unstable equilibrium that corresponds
to a Universe dominated by sti↵ matter (!e↵ = 1) in the remote past.

q = 1: in this case we have two classes of solutions, namely

(a) x2 = 1� r2 , l2 = (1� r2)�1 , y = 0 , v = 0 , zi = 0 , wi = 0 , i = 1, 2, 3 ,

(b) r2 = 1� x2 � y2 , v = 0 , l = 0 , zi = 0 , wi = 0 , i = 1, 2, 3 .

Both classes are non-hyperbolic since some eigenvalues are vanishing. For the class (a) we
see that the radiation domination cannot be realised entirely with relativistic matter, which
would require r = 1 and a diverging l. For the class (b) instead, r = 1 is allowed provided
x = y = 0, therefore radiation domination can be achieved with relativistic matter only.
As for the previous case, v = 0 implies that �2 = �2

0. The numerical solution shows that
this equilibrium is not stable, in fact it is “metastable” because the condition q = 1 (i.e. a
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where ↵ =
p
3�/g is a dimensionless constant whose value will be discussed below.

Before solving numerically the system, it is crucial to find the equilibrium points and
to study their stability. The system has an infinite number of fixed points that, however,
correspond to a discrete and finite set of values for the deceleration parameter, namely
q = 2, 1, 1/2, 0,�1. We now examine each family of equilibria.

q = 2: in this case the set of fixed points is defined by

z2 = 1 , x = 0 , y = 0 , v = 0 , r = 0 , l = 0 , wi = 0 , i = 1, 2, 3 .

Physically, this solution corresponds to f = 0 and V = 0, which means that the Higgs field
takes its vacuum value �2 = �2

0 on the fixed point. By computing the Jacobian we find that
the eigenvalues are all real but some of them are vanishing thus the equilibrium points are
non-hyperbolic and numerical methods are necessary to fully assess the stability. In fact, the
numerical solution (see below) shows that this is an unstable equilibrium that corresponds
to a Universe dominated by sti↵ matter (!e↵ = 1) in the remote past.

q = 1: in this case we have two classes of solutions, namely

(a) x2 = 1� r2 , l2 = (1� r2)�1 , y = 0 , v = 0 , zi = 0 , wi = 0 , i = 1, 2, 3 ,

(b) r2 = 1� x2 � y2 , v = 0 , l = 0 , zi = 0 , wi = 0 , i = 1, 2, 3 .

Both classes are non-hyperbolic since some eigenvalues are vanishing. For the class (a) we
see that the radiation domination cannot be realised entirely with relativistic matter, which
would require r = 1 and a diverging l. For the class (b) instead, r = 1 is allowed provided
x = y = 0, therefore radiation domination can be achieved with relativistic matter only.
As for the previous case, v = 0 implies that �2 = �2

0. The numerical solution shows that
this equilibrium is not stable, in fact it is “metastable” because the condition q = 1 (i.e. a
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Figure 1. Evolution of the deceleration parameter q(N) and the corresponding e↵ective equation
of state !e↵(N). The initial conditions are given by (4.1) at N = 0, corresponding to the black
vertical line. We note that the evolution of the system mimics the transition between a remote past
sti↵ matter-dominated Universe and a final dark energy-dominated Universe, passing through two
transient phases of radiation and matter domination respectively.

domination is caused by the variable z2, which becomes dominant in the remote past, see
figure 3. It is also interesting to see the behaviour of other variables. In particular, we show
in figure 4 the plot of z1 as a function w1 in the present epoch (the results for the other two
couples of variables are qualitatively the same). The plot clearly shows the attractive nature
of the fixed point with q = �1.

As explained above, in principle we do not have clear indications on the value of ↵.
However, we can relate it to physical observables. By using the definitions of the variables
l(N), y(N), and v(N), we find that

M

H
=

yl2p
2g

, (4.2)

�2 � �2
0

M2
=

6
p
2v

↵yl2
.

The first relation implies that, at the present time, and with the initial conditions (4.1), the
coupling g must be very small. With H = 1.4 ⇥ 10�42GeV and M = 2.4 ⇥ 1018 Gev, and
↵ = 1, we find g ⇠ 10�54. For ↵ = 1, this implies an even smaller �, of the order � ⇠ 10�109.
The second relation instead gives an estimate of the displacement from the vacuum value of
the Higgs field, which corresponds to (�2 � �2

0)/M
2 ⇠ 10�6 with (4.1).

If we wish to increase the value of g and �, we need to increase of several orders of
magnitude the initial value of l(N) (on the contrary, the value of y(N) cannot be larger
than unity because of the constraints (3.5) and (3.7)). In turn, this implies that the initial
value of x(N) must be carefully chosen so that the first equation of (3.8) does not yield
large derivatives. This means, essentially, that x ⇡ 1/l over all the integration range. All
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Figure 2. Evolution of the density parameters with the same initial conditions as in figure 1. The
vertical black line is the present time.

Figure 3. Evolution of the “sti↵ matter” density parameter ⌦z = z21 + z22 + z23 , which is dominant
in the remote past. We find that the time at which it becomes dominant only depends on the initial
values given to zi at N = 0. By lowering these values we can push back the sti↵-matter phase at
virtually arbitrarily large time |N |. While mathematically interesting, this early time solution is not
compatible with observations, as it does not connect smoothly to an inflationary phase.

these refinements require more powerful numerical integration methods and will be discussed
elsewhere. However, the solutions shown above are promising and we believe that a thorough
analysis will be able to find stable numerical solutions with larger values of � and g.
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Before proceeding into the discussion of the numerical solutions, we must assign a

reasonable value to ↵, which is in fact the only free parameter of the theory. We note that the
stability of the equilibrium points is independent on this parameter since the eigenvalues do
not depend on ↵. This can be qualitatively understood from the fact that in the system (3.8)
↵ appears only in non-linear terms. Therefore, the structure of the fixed points in una↵ected
by the value of ↵. However, for numerical solutions we need to estimate it.

In the Higgs sector of the SM, the coupling constants are related to the vacuum energy
and to the mass spectrum of the theory. In particular, g = 2MW /v, where MW ' 80GeV is
the mass of the W± bosons and v = (

p
2GF )�1/2 ' 246GeV is the vacuum expectation value

of the Higgs, determined by the Fermi coupling constant. The self-coupling of the Higgs is
determined experimentally to be � = 0.13. If we identify the parameters g and � in our
model with these values, we find ↵ = 0.96.2 With no other available guiding principle, we
then fix ↵ = 1 in our numerical calculations and we will discuss the physical observables at
the end.

4 Numerical solutions

In the previous section we have shown the existence of one stable asymptotic equilibrium
point that corresponds to a final state of dark energy domination. In this section we solve
the dynamical system numerically in the attempt to build a realistic scenario. We anticipate
that the numerical solutions shown below are just a preliminary study of the full solution
space, whose exploration requires sophisticated numerical tools and will be presented in
another work. Our aim is just to demonstrate the validity of our model in recreating a
realistic scenario.

We choose to fix the initial conditions at the present time, by imposing ⌦r ⇡ 0, ⌦de ⇡
0.69, and ⌦m ⇡ 0.31. In detail, we set

x = 10�9 , y = 10�8 , v = 0.83 , r = 10�2 ,
z1 = �10�11 , z2 = 2⇥ 10�11 , z3 = 3⇥ 10�11 , l = 4⇥ 10�8 ,
w1 = 10�9 , w2 = 4⇥ 10�10 , w3 = 2⇥ 10�9 ,

(4.1)

at N = 0. Our numerical solutions show that, with these initial data, matter-dark energy
equality occurs at N ' �0.3 (corresponding to a redshift z ' 0.3) while matter radiation
equality is at N ' �8.1 (redshift z = 3360).

The first relevant plot is in figure 1 that shows the behaviours of the deceleration
parameter and of !e↵ as a function of N over several e-foldings. We see that the remote
Universe starts with a sti↵ matter-dominated phase (!e↵ = 1) and evolves towards the
equilibrium point at q = �1, which corresponds to !e↵ = �1. The transition between the two
extrema is characterised by two plateaux corresponding to radiation and matter domination
respectively. They also coincide with two unstable fixed points (q = 1 and q = 1/2) discussed
in the previous section. This proves that the Yang-Mills Higgs equations coupled to gravity
and ordinary fluids are able to describe all phases of the evolutions of the Universe (except
for the initial inflationary expansion). Initial conditions may change the duration of each
intermediate phase but, in general, do not modify the overall evolution of the solutions.

The evolution of the relative density of radiation, matter, and dark energy is displayed
in figure 2. If we extend the computation at earlier times, we find that the sti↵ matter

2
It is amusing how close this value is to the inflationary scalar spectral index ns.
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Figure 4. Evolution of the variable z1 as a function of w1 in the range N = [�0.03, 0].

5 Concluding remarks

In this paper, we have studied the full Einstein Yang-Mills Higgs system of equation embedded
in a flat Robertson-Walker spacetime. The remarkable feature of this system is the set of fixed
points that coincide with various kinds of matter domination, beginning with an unstable
sti↵ matter type in the remote past and ending with a stable final stage of dark energy
domination. The transition between these two eras is characterised by metastable phases of
radiation and matter domination. Numerical solutions seem to confirm this evolution and
we conclude that this model is valid explanation of the current acceleration of the Universe.

Of course there are many issues to be considered. First of all, a full numerical study
of the system is necessary, in particular to assess the stability against perturbations. In
addition, the model can be extended to di↵erent kinds of gauge groups and/or potentials. In
any case, our task was to show that EYMH equations were able to reproduce dark energy. We
found that not only this is true but also that the entire evolution from radiation domination
to today is compatible with this model.

It would be interesting to investigate extensions of this model towards the inflationary
era. This might be in principle possible recalling that the non-minimal coupling of the
Higgs field or of the gauge potential to gravity provides for valid models of inflation [20–
23]. Typically, the non-minimal coupling becomes negligible at low energy so it would not
a↵ect the evolution of the Universe after inflation, which is well described by our model. The
possibility that the EYMH Lagrangian non-minimally coupled to gravity connects the current
accelerate expansion to the initial inflationary phase is therefore an open and interesting
question.
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LINEARISED SYSTEM  

 We linearise and solve the system around the stable fixed point: 

we impose the conditions 

we find that 

therefore this model predicts phantom dark energy at the present time!   
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LINEARISED SYSTEM  

• If we compare with data (WiggleZ DE Survey)  

• assume the Standard Model parameter    g = 1/2,   
• assume that the system is close to the potential minimum  

we can fix the values of the current gauge field to  

work in progress… 

!0 = �1.080± 0.135

� ' �0 ' 246 GeV

f0 ' 7⇥ 10�26 GeV
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CONCLUSIONS 

• Dark Energy is natural in Yang-Mills Higgs Einstein gravity 
• It is a mathematical solution and the only stable fixed point 
• Standard potential and couplings 
• Other fixed points correspond to matter/radiation domination 
• There are trajectories linking Early Universe to DE dominated Universe 
• The model makes a strong prediction: phantom dark energy today 

THINGS TO DO 

• Perturbations 
• Improve forecasts, including early DE 
• Connect to Early Universe (Higgs inflation?) 
• Quantum corrections …  


