The gamma-ray monitoring of newly discovered Be/BH binary system MWC 656

Pere Munar-Adrover (pere.munar@iaps.inaf.it)
Sabina Sabatini

TEXAS Symposium 2015 Geneve, 13-18 December 2015

OUTLINE

- The AGILE satellite
- The Fermi satellite
- Motivation
- Counterparts
 - MWC 656
 - RX J2243.1+4441
- Follow-up
 - AGILE data analysis
 - Fermi data analysis
 - Comparison AGILE vs Fermi
- Conclusions

THE AGILE SATELLITE

- AGILE (Astrorivelatore Gamma a Immagini LEggero)
- Two main instruments:
 - Super Agile: hard X-ray detector
 - GRID: gamma-ray camera
 - Energy range: 50 MeV 50 GeV
 - PSF: 4°@100MeV 0.°8@1GeV
- Operation modes:
 - Pointing, from launch until october 2009
 - Spinning, from october 2009 on

THE FERMI SATELLITE

- Two instruments
 - GBM
 - The LAT (Large Area Telescope)
 - Energy range: 30 MeV 300 GeV
 - PSF: 2°@300MeV 0.°8@ IGeV
- Operation mode:
 - Scanning: covering most of the sky every few hours

THE AGILE SATELLITE

Full band (E>100 MeV) AGILE all-sky map (pointing + spinning up to 2012)

THE FERMI SATELLITE

Fermi/LAT (E>IGeV) all-sky map after 5 years of observation

MOTIVATION

- In July 2010 AGILE detected transient gamma-ray source AGL J2241+4454 (Lucarelli et al. 2010) at galactic coordinates (1, b) = (100.°0, -12.°0) \pm 0.°6
- Significance $> 5\sigma$, Flux(E>100MeV)=1.5×10⁻⁶ ph cm⁻² s⁻¹

MOTIVATION

POSSIBLE COUNTERPARTS: RX J2243.1+4441

- Observed with XMM-Newton (15 ks) and VLA
- Detected at more than 5σ in both
- Difficult to obtain X-ray spectrum because it is at the border of the ccd
- Radio core flux 2.2mJy/beam
 - South lobe seems variable (galactic source overlaped?)
- Morphology similar to FR-II
 - less probability of gamma-ray emission?

VLA 3GHz + XMM 0.2-10 keV contours

Adapted from Marcote 2015, PhD Thesis

- Discovered thanks to the AGILE detection of a gamma-ray flare (Lucarelli et al. 2010)
- Williams et al. (2010) found photometric eriodicity. Binary system?
- Confirmed as a binary system by Casares et al. (2012)
- Be star orbited by a BH (Casares et al. 2014) with a mass between 3.8 and 6.9 M₀
- MWC 656 is the first known binary system of this class
- Confirmed as a HMXB by Munar-Adrover et al. (2014)

Table 1 Orbital elements for MWC 656

Parameter	Value	
P _{orb} (days)	60.37 (fixed)	
T_0 (HJD – 2,450,000)	$3,243.70 \pm 4.30$	
е	0.10 ± 0.04	
ω (degrees)	163.0 ± 25.6	
$\gamma (\text{km s}^{-1})$	-14.1 ± 2.1	
$K_1 (\text{km s}^{-1})$	32.0 ± 5.3	
$K_2 ({\rm km s^{-1}})$	78.1 ± 3.2	
$a_1 \sin i (R_{\odot})$	38.0 ± 6.3	
$a_2 \sin i (R_{\odot})$	92.8 ± 3.8	
$M_1 \sin^3 i (M_{\odot})$	5.83 ± 0.70	
$M_2 \sin^3 i (M_{\odot})$	2.39 ± 0.48	
M_2/M_1	0.41 ± 0.07	
$\sigma_{\rm f} ({\rm km s}^{-1})$	16.7	

Image credit: Gabriel Pérez - SMM (IAC)

Casares et al. (2014)

Be star

Accretion-ejection coupling in XRBs

Interesting because it is the first known case of a binary system containing a Be star and a BH

- Observed with XMM-Newton (15 ks)
- We detect a faint source at 4σ
 c.l. coincident with the position of MWC 656
- X-ray source position compatible with the *Hipparcos* position of MWC 656 at 2.4σ
- Detected only in the 0.3-5.5 keV range
- Spectrum with low number of counts (0.3-5.5 keV energy range)

Munar-Adrover et al. (2014)

- Radio observations with VLA (Dzib et al. 2015): 7 dedicated obs. in 2015
- Detection of a source compatible with the position of MWC 656
- Variable radio flux in week scales
 - 2h obs @ 8-12 GHz: 14.2 ± 2.9 μJy (epoch 1, orbital phase 0.49)
 - integration of 6 obs @ 8-12 GHz: $3.7 \pm 1.4 \mu$ Jy (epoch 2-7)

Dzib et al. (2015)

Munar-Adrover et al. (2014)

- Analysis strategy (AGILE and Fermi/LAT):
 - Blind search in 2-days bins
 - Search for periodicity
 - Search for steady emission
 - Stack detected events to get a spectrum

• Blind search: 10 flaring events registered by AGILE between 2007 and 2013

AGILE GAMMA-RAY TRANSIENT DETECTIONS AROUND THE POSITION OF MWC 656.

l	b	${ m t}_{start}$	${ m t}_{end}$	Flux	\sqrt{TS}
[°]	[°]	[UT]	[UT]	$[\times 10^{-6} \text{ cm}^{-2} \text{ s}^{-1}]$	V 1 \sim
100.28	-13.22	2007-11-23 UT00:02:10	2007-11-24 UT12:02:12	1.5 ± 0.5	4.5
100.22	-12.61	2008-06-28 UT12:03:15	2008-06-30 UT06:03:15	0.6 ± 0.3	3.2
101.74	-11.25	2009-01-04 UT12:02:12	2009-01-07 UT00:02:12	0.5 ± 0.2	3.1
100.94	-12.65	2010-06-13 UT12:01:06	2010-06-14 UT18:01:06	1.4 ± 1.1	3.2
99.27	-11.50	2010-06-30 UT00:01:06	2010-07-02 UT00:01:06	1.3 ± 0.6	3.1
99.96	-12.24	2010-07-25 UT00:02:12	2010-07-27 UT00:02:12	1.4 ± 0.6	3.8
99.94	-12.76	2011-10-08 UT00:02:12	2011-10-10 UT00:02:12	2.5 ± 1.1	3.4
101.70	-12.51	2011-04-09 UT00:02:12	2011-04-11 UT00:02:12	2.2 ± 1.1	3.1
100.38	-12.70	2013-07-10 UT00:00:00	2013-07-12 UT00:00:00	3.2 ± 1.6	3.5
100.34	-11.81	2013-03-07 UT00:00:00	2013-03-08 UT09:00:00	2.6 ± 1.4	3.1

from Le Hoang master thesis (2014)

Sabatini et al. (2016) in preparation

Sabatini et al. (2016) in preparation

- AGILE spectrum between 100 MeV and 3 GeV
- Integrating over all detected gamma-ray flares
- Spectral fit with photon index $\Gamma = 2.3 \pm 0.2$

Sabatini et al. (2016) in preparation

FERMI/LAT DATA ANALYSIS

- Pass 8 data
- Blind search in 2-day bins: no significant events
- Steady emission: UL for 6 years integration: 2.2x10⁻¹⁰ cm⁻² s⁻¹
- Stacking of AGILE detected flares: UL integrating all flares: 3.0×10⁻⁸ cm⁻² s⁻¹
- Search for periodic emission

Sabatini et al. (2016) in preparation

COMPARISON: AGILE vs FERMI

 Fermi and AGILE effective area decrease with zenith distance (ZD), specially above 50°

- We checked the source ZD at any given moment for the entire Fermi and AGILE missions
- During AGILE 2010 flare, MWC
 656 is almost always at ZD >
 50° for Fermi

COMPARISON: AGILE vs FERMI

 Time spent by AGILE and Fermil LAT observing MWC 656 at different ZD

• Flares:

- AGILE: more than 50% of time at ZD < 50°
- Fermi/LAT: only 20% of time at ZD < 50°
- Rest of time:
 - AGILE: on average 30% of time spent at ZD < 50°
 - Fermi/LAT: on average 12% of time spent at ZD < 50°

Sabatini et al. (2016) in preparation

CONCLUSIONS

- AGILE detection by Lucarelli et al. (2010) of AGL J2241+4454 triggered the study of this region of the sky
- The first Be/BH system was discovered
- Munar-Adrover et al. (2014) discovered the X-ray counterpart of MWC 656. It is a high-mass X-ray binary. Two spectral components: thermal and non thermal. System at the quiescent state with very low luminosity
- AGILE follow-up revealeded 10 flares. Spectrum derived by stacking them.
 No sign of periodicity or recurrence
- Fermi/LAT does not detect the flares or any other episode of activity from MWC 656 field
- Reason of discrepancy might be diferences in off-axis position of MWC 656 between AGILE and Fermi/LAT during the occurrence of the flares
- Future work: theoretical modelling (ADAF, etc.)

Thank you

- AGILE detection by Lucarelli et al. (2010) of AGL J2241+4454 triggered the study of this region of the sky
- The first Be/BH system was discovered
- Munar-Adrover et al. (2014) discovered the X-ray counterpart of MWC 656. It is a high-mass X-ray binary. Two spectral components: thermal and non thermal. System at the quiescent state with very low luminosity
- AGILE follow-up revealeded 10 flares. Spectrum derived by stacking them.
 No sign of periodicity or recurrence
- Fermi/LAT does not detect the flares or any other episode of activity from MWC 656 field
- Reason of discrepancy might be diferences in off-axis position of MWC 656 between AGILE and Fermi/LAT during the occurrence of the flares

Back up

COMPARISON: AGILE vs FERMI

Sabatini et al. (2016) in preparation

FERMI BLIND SEARCH

FERMI FLARE PHOTON ARRIVALTIME

WORK IN PROGRESS: JOINT CHANDRA-VLA OBSERVATION

- Joint Chandra/VLA observations to:
 - Obtain good X-ray position and spectrum
 - Detect the source in radio
 - Check accretion/ejection coupling in the first quiescent HMXB
- 60 ks obs with Chandra + 6 h obs with VLA (8 - 12 GHz)
- Expected radio flux density between 9 and 18 µJy

AT TeV ENERGIES

X-RAY DATA ANALYSIS

- The non thermal luminosity in the 0.3-5.5 keV range is $L_X=(1.6^{+1.0}_{-0.9})\times10^{31}$ erg s⁻¹ = $(3.1\pm2.3)\times10^{-8}$ L_{Edd}
- The value of non thermal luminosity is well below the threshold of 10⁻⁵ L_{Edd} set by Plotkin et al. (2013) to indicate the quiescent state of XRBs, making our results compatible with MWC 656 being in quiescence
- This is the first case of a detection of a HMXB with a BH in quiescence
- Might be interpreted as an ADAF which leads to the low X-ray luminosity

X-RAY DATA ANALYSIS

- Thermal component
 - -Might be arising from the hot wind of the Be star
 - -The luminosity of this component is compatible with the $L_x/L_{Bol} \sim 10^{-7}$ relation from Cohen et al. (1997).

- Non thermal component
 - -Photon index $\Gamma = 1.0\pm0.8$ compatible with Plotkin et al. (2013)
 - -Possible origin in the vicinity of the black hole
 - -The non thermal luminosity in the 0.3-5.5 keV range is $L_{x}=(1.6^{+1.0})\times10^{31} \text{ erg s}^{-1} = (3.1\pm2.3)\times10^{-8} L_{Edd}$