

Simulations of ultralight axion dark matter halos

Jens Niemeyer University of Göttingen

Collaborators:

Christoph Behrens, Xiaolong Du, Jan Frederik Engels, Bodo Schwabe, Jan Veltmaat

 Alternatively to the often considered WIMPs (m ~ 100 GeV), dark matter may consist of ultralight (pseudo)scalar particles (WISPs). Extensive literature on scalar field dark matter (SFDM), e.g. Guzman, Urena-Lopez, Suarez, Matos, Rindler-Daller,...

Ultralight Axion (ULA) Dark Matter

- Prominent candidate: axion, originally proposed to solve the strong CP problem in QCD via the Peccei-Quinn symmetry breaking mechanism.
- String theory suggests the existence of *many* light pseudoscalar fields (axion-like particles, ALPs) (Arvanitaki et al. 2010)
- In a broad mass range, cosmology yields the strongest constraints on these ultralight axions (ULAs):

ULA Cosmology

- See David Marsh's recent review (arXiv:1510.07633) for details and references
- Production by *misalignment* (non-thermal) \rightarrow cold condensate
- Frozen for $H \gg m$ (\rightarrow dark energy), oscillating for $H \ll m$ (\rightarrow dark matter)
- Change background expansion and growth of structure → constraints from
 - CMB, LSS (Hlozek et al. 2015)
 - reionization (Bozek et al. 2015)
 - halo density profiles and substructure (Marsh & Silk 2013, Schive et al. 2014, Marsh & Pop 2015, ...)

ULAs and small-scale structure

 "Quantum pressure" prevents gravitational collapse of structures ~ below de Broglie wavelength (e.g., Hu et al. 2000):

$$v \sim (G\rho)^{1/2} r \implies \lambda \sim (mv)^{-1} \sim m^{-1} (G\rho)^{-1/2} r^{-1}$$

• This introduces a "Jeans length" $r_J = \lambda \rightleftharpoons r$

$$r_J = 2\pi/k_J = \pi^{3/4} (G\rho)^{-1/4} m^{-1/2} ,$$

= $55m_{22}^{-1/2} (\rho/\rho_b)^{-1/4} (\Omega_m h^2)^{-1/4} \text{kpc} \qquad m_{22} = m/10^{-22} \text{eV}$

• This mass range may solve some of the small-scale problems (missing satellites, cusp-core, too-big-to-fail) (Marsh & Silk 2013), but is already under pressure from high-z UV sources (Bozek et al. 2014).

Cosmological simulations with ULA dark matter

In the newtonian limit, ULAs obey the Schrödinger-Poisson (SP) equations:

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2a^2m}\nabla^2\psi + mV\psi$$

$$\nabla^2 V = 4\pi G a^2 \delta \rho = \frac{4\pi G}{a} \rho_0(|\psi|^2 - 1)$$

(SP equations also proposed for numerical solution of coarse-grained Vlasov equation for CDM by Widrow & Kaiser 1993)

• First simulations recently published by Schive et al. 2014:

- cosmology code developed at LBNL (Berkeley)
- C++ / fortran, MPI + OpenMP parallelized
- block-structured adaptive mesh refinement (AMR)
- unsplit PPM hydro scheme + particles + particle-mesh gravity
- star particles with feedback + multi-phase ISM model

additional physics:

- ULA dark matter (alternative methods):
 - 1. Schrödinger solver (implicit or explicit)
 - 2. particle-mesh solver for Madelung equations:

 $\dot{\rho} + \nabla(\rho \mathbf{v}) = 0$ $\dot{\mathbf{v}} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\nabla(Q + V)$

$$\mathbf{v} = m^{-1} \nabla S$$
 $Q = -\frac{\hbar^2}{2m^2} \frac{\nabla_{\mathbf{v}}}{\sqrt{2}}$

"quantum pressure"

Boson star (or halo) collisions

- Individual halos are newtonian oscillaton solutions (Guzman & Urena-Lopez 2004), i.e. equilibrium configurations of SP
- Schrödinger equation:

• Madelung equation:

Halo merger simulations with Schrödinger-Poisson solver

stationary "boson halo" solutions

Halo merger simulations with Schrödinger-Poisson solver

stationary "boson halo" solutions

Halo merger simulations with PM solver (Madelung picture)

stationary "boson halo" solutions

Halo merger simulations with PM solver (Madelung picture)

stationary "boson halo" solutions

Halo profiles and core masses

First cosmological simulation with Madelung PM method

Stochastic merger trees for ULA halos

- quantum Jeans length \rightarrow modifications w.r.t. CDM (Marsh & Silk 2013):
 - transfer function with smallscale cutoff
 - critical density for collapse higher near Jeans mass

 - idea: use modified stochastic merger tree (à la Lacey & Cole 1993) in semi- $\frac{1}{5}$ 0.001 analytic model for galaxy formation, including small-scale cutoff and solitonic core profile
- implemented into semi-analytic code for galaxy evolution Galacticus (Benson 2010)
- plan: compute constraints from early structure formation and reionization (Du, JN, Behrens, in prep.)

 10^{2}

 10^{1}

 10°

^c Ju⁻¹ ^c Ju⁻¹ ^c Ju⁻¹ ^c Ju⁻²

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{9}

Stochastic merger trees for ULA halos: substructure

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{9}

- Halo substructure models from parameter study of
 - dynamical friction

 10^{10}

- tidal stripping
- tidal heating
- computational challenge: have to solve excursion set barrier distribution function numerically

Halo Mass Function at z = 7

1011

 $M [M_{\odot}]$

CDM (semi)

Axion (semi)

CDM (exc.)

Axion (exc.)

 10^{12}

1013

 10^{10}

 10^{11}

 $M [M_{\odot}]$

 10^{12}

 10^{13}

Summary

- Ultra-light axions can be some or all of dark matter
- Interesting nonlinear phenomenology for LSS if de Broglie wavelength is of order several kpc (i.e. m ~ 10⁻²² eV)
- Constraints from nonlinear clustering, degeneracies with neutrinos, etc. (e.g. from Lyman alpha forest) require simulations
- May or may not affect "CDM small scale crisis" (missing satellites, cuspcore, too-big-to-fail)
- Newtonian dynamics described by Schrödinger-Poisson equations
- Madelung (fluid) picture appears to be more efficient and robust for cosmological simulations, but resolution issues remain
- Semi-analytic models with modified halo merger trees for constraints from early structure formation and reionization