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Ultralight	Axion	(ULA)	Dark	Ma4er

• Alterna'vely	to	the	oCen	considered	WIMPs	(m	~	100	GeV),	dark	ma4er	may	consist	
of	ultralight	(pseudo)scalar	par'cles	(WISPs).	Extensive	literature	on	scalar	field	dark	
ma4er	(SFDM),	e.g.	Guzman,	Urena-Lopez,	Suarez,	Matos,	Rindler-Daller,…	

• Prominent	candidate:	axion,	originally	proposed	to	solve	the	strong	CP	problem	in	
QCD	via	the	Peccei-Quinn	symmetry	breaking	mechanism.	

• String	theory	suggests	the	existence	of	many	light	pseudoscalar	fields	(axion-like	
par'cles,	ALPs)	(Arvanitaki	et	al.	2010)	

• In	a	broad	mass	range,	cosmology	yields	the	strongest	constraints	on	these	ultralight	
axions	(ULAs):

the black hole into a gravity wave pulsar with possibly
detectable signal at future gravity wave experiments. For
lighter black holes (heavier axion masses) this effect leads
to a spindown of the black hole, resulting in gaps in the
mass spectrum of rapidly rotating black holes. With the
quality of data constantly improving, measurements of
the spin of stellar mass (! 2–10M") black holes will be
able to probe also the QCD axion parameter space with
fa > 1016 GeV, well inside the region where the QCD
axion relic abundance is anthropically constrained. These
effects are discussed in Secs. II D and II E, and in the
appendix.

For axions in the range !10#9 to !108 eV, and assum-

ing the axions have couplings to ~E $ ~B, decays to photons
can potentially lead to signatures. A companion paper will
discuss such decays, as well as the physics induced by
warping the axion decay constant to scales lower than
MGUT, and the many dark sectors implied by Wilsonian
scanning and/or highly warped throats.

B. Rotation of the CMB polarization

Axions much lighter than the QCD axion, when they

have an ~E $ ~B coupling to electromagnetism (EM), change
the polarization of the CMB photons if they start oscillat-
ing anytime between recombination and today. These ax-
ions cannot couple to QCD, as 4d gauge coupling
unification implies, otherwise they would get large contri-
butions to their masses. A coupling to QCD, however, can
be easily avoided in the framework of orbifold GUTs [37–
40]. An example of such a theory is a scenario with one
extra dimension where SUð5Þ is preserved in the bulk and
the breaking down to SUð3Þc ' SUð2ÞL 'Uð1ÞY occurs on
the boundary of the extra dimension. The SM gauge cou-
plings are given by

1

g2c
¼ V

g25
þ 1

h2c
; with c ¼ 1; 2; 3 (17)

where V is the extra-dimensional volume, g5 is the 5d
SUð5Þ coupling and hc are the gauge couplings of the
SUð3Þ ' SUð2Þ 'Uð1Þ brane kinetic terms that are al-
lowed by the brane–localized breaking of SUð5Þ. When
the volume of the extra dimensions is parametrically large
(equivalently when the effective 4d coupling of the SUð5Þ
is much smaller than the brane-localized gauge couplings),
there is apparent SUð5Þ unification for the SM gauge
couplings,

1

g2c
* V

g25
; with c ¼ 1; 2; 3; (18)

with corrections that are parametrically of the same size as
traditional GUT-scale threshold corrections. In these sce-
narios, since gauge coupling unification is not true every-
where in the extra dimensions, axions that have brane-
localized couplings, naturally couple to SUð2ÞL or Uð1ÞY
without coupling to QCD.
Only a few ‘‘local’’ axions are able to couple to electro-

magnetism with full strength in this way. Most axions
resulting from antisymmetric forms are localized on cycles
far away from the position of the SM in the full compacti-
fication. On the other hand, axions from cycles intersecting
with ours have a kinetic mixing with our axion and could
be more weakly coupled to SUð2ÞL or Uð1ÞY . Specifically,
defining

!ij ¼
Z
M
!i ^+ !j; (19)

where !i is the basis of the closed two-forms dual to the
cycles Ci as in (4), the kinetic terms of the four-
dimensional axion fields are of the form

FIG. 1 (color online). Map of the axiverse: The signatures of axions as a function of their mass, assuming fa * MGUT and Hinf !
108 eV. We also show the regions for which the axion initial angles are anthropically constrained not to over-close the Universe, and
axions diluted away by inflation. For the same value of fa we give the QCD axion mass. The beginning of the anthropic mass region
(2' 10#20 eV) as well as that of the region probed by density perturbations (4' 10#28 eV) are blurred as they depend on the details
of the axion cosmological evolution (see Sec. II C). 3' 10#18 eV is the ultimate reach of density perturbation measurements with
21 cm line observations. The lower reach from black hole super-radiance is also blurred as it depends on the details of the axion
instability evolution (see Sec. II E). The region marked as ‘‘Decays,’’ outlines very roughly the mass range within which we expect
bounds or signatures from axions decaying to photons, if they couple to ~E $ ~B. We will discuss axion decays in detail in a companion
paper.

ASIMINA ARVANITAKI et al. PHYSICAL REVIEW D 81, 123530 (2010)
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ULA	Cosmology

• See	David	Marsh’s	recent	review	(arXiv:1510.07633)	for	details	and	
references	

• Produc'on	by	misalignment	(non-thermal)	→	cold	condensate	

• Frozen	for	H	≫	m	(→dark	energy),	oscilla'ng	for	H	≪	m	(→dark	ma4er)	

• Change	background	expansion	and	growth	of	structure	→	constraints	
from	

– CMB,	LSS	(Hlozek	et	al.	2015)	
– reioniza'on	(Bozek	et	al.	2015)	

– halo	density	profiles	and	substructure	(Marsh	&	Silk	2013,	Schive	et	
al.	2014,	Marsh	&	Pop	2015,	…)
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ULAs	and	small-scale	structure

• „Quantum	pressure“	prevents	gravita'onal	collapse	of	structures	~	
below	de	Broglie	wavelength	(e.g.,	Hu	et	al.	2000):	

• This	introduces	a	„Jeans	length“																							:	

• This	mass	range	may	solve	some	of	the	small-scale	problems	(missing	
satellites,	cusp-core,	too-big-to-fail)	(Marsh	&	Silk	2013),	but	is	already	
under	pressure	from	high-z	UV	sources	(Bozek	et	al.	2014).

of a particle in the potential well. To see this, note that
the velocity scales as v ∼ (Gρ)1/2r so that the de Broglie
wavelength λ ∼ (mv)−1 ∼ m−1(Gρ)−1/2r−1. Setting
rJ = λ = r, returns the Jeans scale. Stability below the
Jeans scale is thus guaranteed by the uncertainty prin-
ciple: an increase in momentum opposes any attempt to
confine the particle further.

The physical scale depends weakly on the density, but
in a dark matter halo ρ will be much larger than the
background density ρb. Consider the density profile of a
halo of mass M [≡ (4πr3

v/3)200ρb, in terms of the virial
radius rv] found in CDM simulations [11]

ρ(r, M) ∼
200

3

fρb

(cr/rv)(1 + cr/rv)2
, (5)

where f(c) = c3/[ln(1 + c) − c/(1 + c)] and the concen-
tration parameter c depends weakly on mass. This profile
implies an r−1 cusp for r < rv/c which will be altered
by the presence of the Jeans scale. Solving for the Jeans
scale in the halo rJh as a function of its mass using the
enclosed mean density yields

rJh ∼ 3.4(c10/f10)
1/3m−2/3

22 M−1/9
10 (Ωmh2)−2/9kpc , (6)

where we have scaled the mass dependent factors to the
regime of interest c10 = c/10, f10 = f(c)/f(10), and
M10 = M/1010M⊙. For estimation purposes, we have
assumed rJh ≪ rv/c which is technically violated for
M10

<
∼ 1 and m = 10−22 eV, but with only a mild ef-

fect. In the smallest halos, the Jeans scale is above the
turnover radius rv/c, and there is no region where the
density scales as r−1. The maximum circular velocity
will then be lower than that implied by eqn. (5). More
massive halos will have their cuspy r−1 behavior extend
from r = rv/c down to rJh.

These simple scalings show that the wave nature of
dark matter can prevent the formation of the kpc scale
cusps and substructure in dark matter halos if m ∼
10−22eV. However, alone they do not determine what
does form instead. To answer this question, cosmologi-
cal simulations will be required and this lies beyond the
scope of the present work. Instead we provide here the
tools necessary to perform such a study, a discussion of
possible astrophysical implications and illustrative one
dimensional simulations comparing FCDM and CDM.

Linear Perturbations.— The evolution of fluctuations in
the linear regime provides the initial conditions for cos-
mological simulations and also directly affects the abun-
dance of dark matter halos. Because the initial conditions
are set while the fluctuations are outside the horizon, we
must generalize the Newtonian treatment above to in-
clude relativistic effects.

Following the “generalized dark matter” (GDM) ap-
proach of [12], we remap the equations of motion for the
the scalar field in equation (1) onto the continuity and

Euler equations of a relativistic imperfect fluid. First,
note that in the Newtonian approximation, the current
density j ∝ ψ∗∇ψ − ψ∇ψ∗ plays the role of momentum
density so that “probability conservation” becomes the
continuity equation. The dynamical aspect of equation
(2) then becomes the Euler equation for a fluid with an
effective sound speed c2

eff = k2/4a2m2, where k is the
comoving wavenumber.

This Newtonian relation breaks down below the Comp-
ton scale which for any mode will occur when a < k/2m.
In this regime, the scalar field is slowly-rolling in its po-
tential rather than oscillating and it behaves like a fluid
with an effective sound speed c2

eff = 1 [12]. For our pur-
poses, it suffices to simply join these asymptotic solutions
and treat the FCDM as GDM with

c2
eff =

{

1 , a ≤ k/2m ,
k2/4a2m2 , a > k/2m ,

(7)

with no anisotropic stresses in linear theory. We have
verified that the details of this matching have a negligi-
ble effect on the results. Since the underlying treatment
is relativistic, this prescription yields a consistent, covari-
ant treatment of the dark matter inside and outside the
horizon. The linear theory equations including radiation
and baryons are then solved in the usual way but with
initial curvature perturbations in the radiation and no
perturbations in the FCDM [13].

The qualitative features of the solutions are easily un-
derstood. The comoving Jeans wavenumber scales with

the expansion as kJ ∝ aρ1/4
b (a) or ∝ a1/4 during matter

domination and constant during radiation domination.
Because the comoving Jeans scale is nearly constant, per-
turbation growth above this scale generates a sharp break
in the spectrum. More precisely, the critical scale is kJ

at matter-radiation equality kJeq = 9 m1/2
22 Mpc−1 . Nu-

merically, we find that the linear density power spectrum
of FCDM is suppressed relative to the CDM case by

PFCDM(k) = T 2
F(k)PCDM(k) , TF(k) ≈

cosx3

1 + x8
, (8)

where x = 1.61 m1/18
22 k/kJeq. The power drops by a fac-

tor of 2 at

k1/2 ≈
1

2
kJeqm

−1/18
22 = 4.5m4/9

22 Mpc−1 . (9)

The break in k is much sharper than those expected from
inflation [2] or quartic self-interaction of a scalar field. In
the latter, the Jeans scale is fixed in physical coordinates
so that the suppression is spread over 3-4 orders of mag-
nitude in scale [4].

Low Mass Halos.— In the CDM model, the abundance
of low mass halos is too high when compared with the
luminosity function of dwarf galaxies in the Local Group
[14,15]. Based on analytic scalings, Kamionkowski & Lid-
dle [2] argued that a sharp cutoff in the initial power
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Cold dark matter (CDM) models predict small-scale structure in excess of observations of the cores
and abundance of dwarf galaxies. These problems might be solved, and the virtues of CDM models
retained, even without postulating ad hoc dark matter particle or field interactions, if the dark
matter is composed of ultra-light scalar particles (m ∼ 10−22eV), initially in a (cold) Bose-Einstein
condensate, similar to axion dark matter models. The wave properties of the dark matter stabilize
gravitational collapse providing halo cores and sharply suppressing small-scale linear power.

Introduction.— Recently, the small-scale shortcomings of
the otherwise widely successful cold dark matter (CDM)
models for structure formation have received much at-
tention (see [1–4] and references therein). CDM models
predict cuspy dark matter halo profiles and an abundance
of low mass halos not seen in the rotation curves and lo-
cal population of dwarf galaxies respectively. Though the
significance of the discrepancies is still disputed and so-
lutions involving astrophysical processes in the baryonic
gas may still be possible (e.g. [5]), recent attention has
mostly focused on solutions involving the dark matter
sector.

In the simplest modification, warm dark matter (m ∼
keV) replaces CDM and suppresses small-scale struc-
ture by free-streaming out of potential wells [3], but this
modification may adversely affect structure at somewhat
larger scales. Small-scale power could be suppressed
more cleanly in the initial fluctuations, perhaps originat-
ing from a kink in the inflaton potential [2], but its regen-
eration through non-linear gravitational collapse would
likely still produce halo cusps [6].

More radical suggestions include strong self-
interactions either between dark matter particles [1] or
in the potential of axion-like scalar field dark matter [4].
While interesting, these solutions require self-interactions
wildly in excess of those expected for weakly interacting
massive particles or axions respectively.

In this Letter, we propose a solution involving free par-
ticles only. The catch is that the particles must be ex-
traordinarily light (m ∼ 10−22eV) so that their wave
nature is manifest on astrophysical scales. Under this
proposal, dark matter halos are stable on small scales for
the same reason that the hydrogen atom is stable: the
uncertainty principle in wave mechanics. We call this
dark matter candidate fuzzy cold dark matter (FCDM).

Equations of Motion.— It is well known that if the dark
matter is composed of ultra-light scalar particles m ≪
1eV, the occupation numbers in galactic halos are so high
that the dark matter behaves as a classical field obeying
the wave equation

✷φ = m2φ , (1)

where we have set h̄ = c = 1. On scales much larger than

the Compton wavelength m−1 but much smaller than
the particle horizon, one can employ a Newtonian ap-
proximation to the gravitational interaction embedded in
the covariant derivatives of the field equation and a non-
relativistic approximation to the dispersion relation. It is
then convenient to define the wavefunction ψ ≡ Aeiα, out
of the amplitude and phase of the field φ = A cos(mt−α),
which obeys

i(∂t +
3

2

ȧ

a
)ψ = (−

1

2m
∇2 + mΨ)ψ , (2)

where Ψ is the Newtonian gravitational potential. For
the unperturbed background, the right hand side van-
ishes and the energy density in the field, ρ = m2|ψ|2/2,
redshifts like matter ρ ∝ a−3.

On time scales short compared with the expansion
time, the evolution equations become

i∂tψ = (−
1

2m
∇2 + mΨ)ψ , ∇2Ψ = 4πGδρ . (3)

Assuming the dark matter also dominates the energy
density, we have δρ = m2δ|ψ|2/2. This is simply the non-
linear Schrödinger equation for a self-gravitating particle
in a potential well. In the particle description, ψ is pro-
portional to the wavefunction of each particle in the con-
densate.

Jeans / de Broglie Scale.— The usual Jeans analysis tells
us that when gravity dominates there exists a growing
mode eγt where γ2 = 4πGρ; however a free field oscillates
as e−iEt or γ2 = −(k2/2m)2. In fact, γ2 = 4πGρ −
(k2/2m)2 and therefore there is a Jeans scale

rJ = 2π/kJ = π3/4(Gρ)−1/4m−1/2 ,

= 55m−1/2
22 (ρ/ρb)

−1/4(Ωmh2)−1/4kpc , (4)

below which perturbations are stable and above which
they behave as ordinary CDM. Here m22 = m/10−22eV
and ρb = 2.8 × 1011Ωmh2M⊙ Mpc−3 is the background
density. The Jeans scale is the geometric mean between
the dynamical scale and the Compton scale (c.f. [7–9]) as
originally shown in a more convoluted manner by [10].

The existence of the Jeans scale has a natural interpre-
tation: it is the de Broglie wavelength of the ground state
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Cold dark matter (CDM) models predict small-scale structure in excess of observations of the cores
and abundance of dwarf galaxies. These problems might be solved, and the virtues of CDM models
retained, even without postulating ad hoc dark matter particle or field interactions, if the dark
matter is composed of ultra-light scalar particles (m ∼ 10−22eV), initially in a (cold) Bose-Einstein
condensate, similar to axion dark matter models. The wave properties of the dark matter stabilize
gravitational collapse providing halo cores and sharply suppressing small-scale linear power.
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the covariant derivatives of the field equation and a non-
relativistic approximation to the dispersion relation. It is
then convenient to define the wavefunction ψ ≡ Aeiα, out
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3

2

ȧ

a
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1
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Cosmological	simula>ons	with	ULA	
dark	ma4er

• In	the	newtonian	limit,	ULAs	obey	the	Schrödinger-Poisson	(SP)	equa'ons:	

(SP	equa'ons	also	proposed	for	numerical	solu'on	of	coarse-grained	Vlasov	equa'on	for	CDM	by	
Widrow	&	Kaiser	1993)	

• First	simula'ons	recently	published	by	Schive	et	al.	2014:
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Siddhartha & Uréna-López 2003) or even one-dimensional (Hu
et al. 2000) to study this problem. These simplifications may
not capture what actually results in a three-dimensional system
with realistic initial conditions. In particular, the existence of a
flattened core has been derived or inferred from these previous
works of one-dimensional system or with spherical symmetry.
In this paper, we report high-resolution fully three-dimensional
simulations for this problem. Surprisingly, our simulations re-
veal that the singular cores of bound objects remain to exist even
when the core size is much smaller than the Jean’s length.

In Section 2, we provide an explanation for the possible
existence of the Bose–Einstein state for the extremely low
mass bosons under investigation here. We then discuss two
different representations of ELBDM and the evolution of linear
perturbations for the two representations. In Section 3, the
numerical scheme and initial condition are described. We
present the simulation results in Section 4. In Section 5, we
look into the physics of collapsed cores with detailed analyses
from different perspectives. Finally, the conclusion is given in
Section 6. In the Appendix, we present results of one- and two-
dimensional simulations and demonstrate that singular cores do
not occur in one- and two-dimensional cases.

2. THEORY

2.1. Bose–Einstein Condensate

A Bose–Einstein condensate (BEC) is a state of bosons cooled
to a temperature below the critical temperature. BEC happens
after a phase transition where a large fraction of particles
condense into the ground state, at which point quantum effects,
such as interference, become apparent on a macroscopic scale.
The critical temperature for a gas consisting of noninteracting
relativistic particles is given by (Burakovsky & Horwitz 1996)

Tc ∼
(nch

3m

)1/2
, (1)

where the Boltzmann’s constant and speed of light have been
set to unity. Given the extremely low particle mass assumed
here, Tc is derived from the relativistic Bose–Einstein particle–
antiparticle distribution with the chemical potential set to
particle mass m. Here, the “charge” density nch ≡ n+ − n−,
where n+ and n− are the number densities of particles and
antiparticles in excited states. On the other hand, we have
nch ∼ (m/T )n+, and it follows that Tc ∼

(
n+
3T

)1/2. Note that
n+ scales as a−3 and T as a−1, and it follows Tc scales as
a−1. It means that when T is below Tc at some time after a
phase transition, the temperature will remain subcritical in any
later epoch. As an estimate, if we assume 1% of ELBDM to
be in the excited states after its decoupling, the current critical
temperature becomes

Tc = 3 × 10−14
( m

eV

)−1/2
(

T

eV

)−1/2

eV. (2)

Substituting m ∼ 10−22 eV and T ∼ 10−4 eV, the same as
the present photon temperature, we find that the current critical
temperature Tc = 0.3 eV ≫ T . Hence ELBDM, if exists and
accounts for the dark matter, may very well be in the BEC
state ever since a phase transition in the early universe. Despite
ELBDM particles in the excited state are with a relativistic
temperature, almost all particles are in the ground state and
described by a single nonrelativistic wave function.

2.2. Basic Analysis

The Lagrangian of nonrelativistic scalar field in the comoving
frame is

L = a3

2

[
ih̄

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
+

h̄2

a2m
(∇ψ)2 − 2mV ψ2

]
,

(3)
and the equation of motion for this Lagrangian gives a modified
form of Schrödinger’s equation (Siddhartha & Uréna-López
2003):

ih̄
∂ψ

∂t
= − h̄2

2a2m
∇2ψ + mV ψ, (4)

where ψ ≡ φ(n0/a
3)−1/2 with φ being the ordinary wave

function, n0 the present background number density, and V is
the self-gravitational potential obeying the Poisson equation,

∇2V = 4πGa2δρ = 4πG

a
ρ0(|ψ |2 − 1). (5)

The only modification to the conventional Schrödinger–Poisson
equation is the appearance a−1 associated with the comoving
spatial gradient ∇, and the probability density |ψ |2 to be
normalized to the background proper density ρ/m. In the above,

ρ0 ≡ 3H 2
0

8πG
Ωm = mn0 (6)

is the background mass density of the universe.
To explore the nature of the ELBDM, we first adopt the

hydrodynamical description to investigate its linear evolution.
This approach is not only more intuitive than the wave function
description, its advantage will also become apparent later. Let
the wave function be

ψ =
√

n

n0
ei S

h̄ , (7)

where n = n̄a3, the comoving number density and n̄ is
the proper number density. The quadrature of Schrödinger’s
equation can be split into real and imaginary parts, which
become the equations of acceleration and density separately,

∂

∂t
v +

1
a2

v · ∇v +
∇V

m
− h̄2

2m2a2
∇

(∇2√n√
n

)
= 0 (8)

∂n

∂t
+

1
a2

∇ · (nv) = 0, (9)

where v ≡ ∇S/m is the fluid velocity. There is a new term
depending on the third-order spatial derivative of the wave
amplitude

√
n in the otherwise cold-fluid force equation. This

term results from the “quantum stress” that acts against gravity,
and it can be cast into a stress tensor in the energy and
momentum conservation equation (Chiueh 1998, 2000). The
quantum stress becomes effective only when the spatial gradient
of the structure is sufficiently large.

The fluid equations, Equations (5), (8), and (9), are linearized
and combined to yield

∂

∂t
a2 ∂

∂t
δn − 3H0

2Ωm

2a
δn +

h̄2

4m2a2
∇2∇2δn = 0. (10)

Upon spatially Fourier transforming δn, it follows

d

dt
a2 dnk

dt
−

(
3H0

2Ωm

2a

)
nk +

h̄2k4

4m2a2
nk = 0, (11)
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2003):

ih̄
∂ψ

∂t
= − h̄2

2a2m
∇2ψ + mV ψ, (4)

where ψ ≡ φ(n0/a
3)−1/2 with φ being the ordinary wave

function, n0 the present background number density, and V is
the self-gravitational potential obeying the Poisson equation,

∇2V = 4πGa2δρ = 4πG

a
ρ0(|ψ |2 − 1). (5)

The only modification to the conventional Schrödinger–Poisson
equation is the appearance a−1 associated with the comoving
spatial gradient ∇, and the probability density |ψ |2 to be
normalized to the background proper density ρ/m. In the above,

ρ0 ≡ 3H 2
0

8πG
Ωm = mn0 (6)

is the background mass density of the universe.
To explore the nature of the ELBDM, we first adopt the

hydrodynamical description to investigate its linear evolution.
This approach is not only more intuitive than the wave function
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where n = n̄a3, the comoving number density and n̄ is
the proper number density. The quadrature of Schrödinger’s
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Nyx		
Almgren	et	al.	2013

• cosmology	code	developed	at	LBNL	(Berkeley)	
• C++	/	fortran,	MPI	+	OpenMP	parallelized	
• block-structured	adap've	mesh	refinement	(AMR)	
• unsplit	PPM	hydro	scheme	+	par'cles	+	par'cle-mesh	gravity	
• star	par'cles	with	feedback	+	mul'-phase	ISM	model	

additional physics:	
• ULA	dark	ma4er	(alterna've	methods):	

1. Schrödinger	solver	(implicit	or	explicit)	
2. par'cle-mesh	solver	for	Madelung	equa'ons:

2. Theorie

Als Randbemerkung sei darauf hingewiesen, dass man auch für komplexe Felder
im newtonschen Limit das Schrödinger-Poisson-System mit der Ersetzung

� = �e≠ imc2t
~

erhält sofern angenommen wird, dass nur Moden e≠ikµxµ mit k0 > 0 besetzt sind.

2.3. Madelung-Transformation

Die Madelung-Transformation ist eine äquivalente Formulierung der Schrödinger-
Gleichung. Hierzu nimmt man den Ansatz

� =
Û

fl(x, t)
m

exp(iS(x, t)/~) (2.14)

mit reellen Funktionen fl und S. Dies eingesetzt in die Schrödinger-Gleichung und
Division durch exp(iS/~) ergibt

i~ fl̇

2Ô
fl

≠ Ô
flṠ(x) = ≠ ~2

2m
Ò(ÒÔ

fl + i

~
Ô

flÒS) + mV
Ô

fl

= ≠ ~2

2m
(Ò2Ôfl + i

~
Òfl

fl
ÒS + i

~
Ô

flÒ2S ≠ 1
~2

Ô
fl(ÒS)2)

+ mV
Ô

fl (2.15)

Der Imaginärteilteil dieser Gleichung lässt sich mit der Substitution v = m≠1ÒS

schreiben als

fl̇ + Ò(flv) = 0 (2.16)

und der Realteil als

1
m

Ṡ + 1
2m2 (ÒS)2 = ≠(Q + V ) (2.17)

wobei Q = ≠ ~2

2m2
ÒÔ

flÔ
fl

. Der Gradient des Realteils ist dann

v̇ + (v · Ò)v = ≠Ò(Q + V ) (2.18)
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Boson	star	(or	halo)	collisions
• Individual	halos	are	newtonian	oscillaton	solu'ons	(Guzman	&	

Urena-Lopez	2004),	i.e.	equilibrium	configura'ons	of	SP	

• Schrödinger	equa'on:	

• Madelung	equa'on:

-4e+06
-2e+06

0
2e+06
4e+06
6e+06
8e+06
1e+07

1.2e+07
1.4e+07

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
time [Mpc/km s]

M
W
K

fl

K
v

E

Figure 3. Evolution of the various energy contribution, the total energy and the total mass during
a head-on collision of two unbound boson stars with high relative motion. It is clearly seen that
during the collision kinetic energy associated to the stars’ relative motion (Kv) is transferred into the
interference pattern yielding large values of Kfl.

Figure 4. Head-on collision of two boson stars with high relative velocity. Shown is the initial setup
(left), the collision with its characteristic interference pattern (middle) and the configuration when the
two boson stars have changed positions (right).

stored in the interference pattern strongly boosting the energy contributions coming from the
density profile K

fl

. After the collision the kinetic energy is transferred back to stars’ motion.
There is no significant decrease in velocity or deformation of the density profiles due to the
collision.

Next we consider the gravitationally bound case by preparing the same scenario but
with the two boson stars initially at rest. Due to gravitational attraction they start moving
towards each other. The evolution can be seen in Figure 5. The corresponding evolution of
the energy contributions is shown in Figure 6. There total energy and mass conservation is
clearly seen. Furthermore, after the collision at 0.84 Mpc/km s, corresponding well to the
free fall time of the system

t
�

= fi

2
R3/2

Ô
4GM

ƒ 0.90 Mpc/km s, (4.19)

both K
fl

and W oscillate against each after while K
v

stays roughly constant. This is a clear

– 11 –

'me
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Halo	merger	simula>ons	with	
Schrödinger-Poisson	solver

Ini'al	condi'ons:	
sta'onary	„boson	halo“	solu'ons
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Halo	merger	simula>ons	with	
Schrödinger-Poisson	solver

Ini'al	condi'ons:	
sta'onary	„boson	halo“	solu'ons
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Halo	merger	simula>ons	with	PM	
solver	(Madelung	picture)

Ini'al	condi'ons:	
sta'onary	„boson	halo“	solu'ons
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Halo	merger	simula>ons	with	PM	
solver	(Madelung	picture)

Ini'al	condi'ons:	
sta'onary	„boson	halo“	solu'ons
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r

ρ
⊙

3

Halo	profiles	and	core	masses

Madelung

Schrödinger

Madelung

4

FIG. 3: Snapshots of a soliton collision simulation. Panels
(a)-(c) show the projected density distribution at the initial
and intermediate stages, and panel (d) shows a close-up of
the conspicuous solitonic core at the final stage. Fluctuating
density granules resulting from the quantum wave interfer-
ence appear everywhere and have a size similar to the central
soliton.

follows the relation

M ′
c = α(|E′|/M ′)1/2. (5)

Here the total kinetic energy, potential energy and mass
are defined in the primed (redshift-independent) coor-
dinates as E′

k ≡ 1
2

∫

|∇′ψ′|2d3x′, E′
p ≡ 1

2

∫

|ψ′|2V ′d3x′,
M ′ ≡

∫

|ψ′|2d3x′, and α is a dimensionless constant close
to unity. The physical foundation of this relation can be
appreciated as follows. The RHS represents the halo ve-
locity dispersion, σ′

h, and on the LHS the λ scaling de-

mands that M ′
c ∼ x′−1

c , the inverse soliton size. Accord-
ingly, Eq. (5) relates the soliton size to the halo veloc-
ity dispersion through the uncertainty principle, where
x′
cσ

′
h ∼ 1. This result is non-trivial in that the uncer-

tainty principle is originally a local relation, but here it is
found to hold non-locally, relating a core (local) property
to a halo (global) property. The non-local uncertainty
principle reveals itself in panel (d) of Fig. 3. The inverse
halo velocity dispersion is manifested by the size of halo
density granules, and the fact that the halo granule size
is close to the soliton size provides another perspective
to view the finding of Eq. (5). Eigenmode decomposi-
tion of the core-halo system can help our understanding
of the detailed physics underlying this quantum “ther-
malization”, and it will be presented in a separate work
(Wong et al., in preparation).

FIG. 4: Scaling relation between core mass and system spe-
cific energy in the soliton collision experiments. Error bars
represent the root-mean-square scatter of different realiza-
tions and sampling time at a given specific energy bin. Note
that the redshift dependence has been absorbed into the
rescaled mass M ′ and energy E′ (see text for details).

We are now in a position to understand the physical
meaning of the empirical Eq. (4). In the structure for-
mation simulations, we verify that halos at different red-
shifts all conform to Eq. (5) by taking E′ and M ′ as the
rescaled halo energy (E′

h) and virial mass (M ′
h). Adopt-

ing the virial condition |E′
h| = |E′

p|/2 ∼ 3M
′2
h /10x′

vir

and retrieving the redshift dependence then give Mc =
α(3Mh/10xvir)1/2a−1/2. Finally, solving xvir as a func-
tion ofMh using the definition of virial mass given imme-
diately after Eq. (4) yields the expected core-halo mass
relation

Mc =
1

4
a−1/2

(

ζ(z)

ζ(0)

)1/6 ( Mh

Mmin,0

)1/3

Mmin,0, (6)

whereMmin,0 ≡ 375−1/432πζ(0)1/4ρm0(H0mψ/!)−3/2Ω−3/4
m0

∼ 7 × 107 M⊙ for mψ = 8.0 × 10−23 eV. Here we have
taken α = 1 and typical values for the cosmological
parameters. Eq. (6) is identical to Eq. (4) apart from
an additional slowly varying factor ζ(z)1/6. The physical
core radius, rc = axc, is inversely proportional to Mc

and can be expressed as

rc = 2.0 a1/2
(

ζ(z)

ζ(0)

)−1/6 ( Mh

109 M⊙

)−1/3

kpc. (7)

The smallest halo should be close to a single isolated
soliton, with a wide core and a steeper outer gradient.
Our definition of core mass, M(r ≤ rc), makes up about

Schive	et	al.	2014 Schwabe,	Veltmaat,	JN,	in	prep.
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First	cosmological	simula>on	with	
Madelung	PM	method
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Stochas>c	merger	trees		
for	ULA	halos

• quantum	Jeans	length	→	
modifica'ons	w.r.t.	CDM	(Marsh	&	Silk	
2013):	

– transfer	func'on	with	small-
scale	cutoff	

– cri'cal	density	for	collapse	
higher	near	Jeans	mass	

– scale	dependent	growth	func'on	

• idea:	use	modified	stochas'c	merger	
tree	(à	la	Lacey	&	Cole	1993)	in	semi-
analy'c	model	for	galaxy	forma'on,	
including	small-scale	cutoff	and	
solitonic	core	profile	

• implemented	into	semi-analy'c	code	
for	galaxy	evolu'on	Galac.cus	
(Benson	2010)	

• plan:	compute	constraints	from	early	
structure	forma'on	and	reioniza'on	
(Du,	JN,	Behrens,	in	prep.)

CDM
Axion
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Stochas>c	merger	trees		
for	ULA	halos:	substructure

• Halo	substructure	models	from	
parameter	study	of		

– dynamical	fric'on	

– 'dal	stripping	

– 'dal	hea'ng	

• computa'onal	challenge:	have	to	solve	
excursion	set	barrier	distribu'on	
func'on	numerically
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Summary
• Ultra-light	axions	can	be	some	or	all	of	dark	ma4er	

• Interes'ng	nonlinear	phenomenology	for	LSS	if	de	Broglie	wavelength	is	
of	order	several	kpc	(i.e.	m	∼	10-22	eV)	

• Constraints	from	nonlinear	clustering,	degeneracies	with	neutrinos,	etc.	
(e.g.	from	Lyman	alpha	forest)	require	simula'ons	

• May	or	may	not	affect	„CDM	small	scale	crisis“	(missing	satellites,	cusp-
core,	too-big-to-fail)	

• Newtonian	dynamics	described	by	Schrödinger-Poisson	equa'ons	

• Madelung	(fluid)	picture	appears	to	be	more	efficient	and	robust	for	
cosmological	simula'ons,	but	resolu'on	issues	remain	

• Semi-analy'c	models	with	modified	halo	merger	trees	for	constraints	
from	early	structure	forma'on	and	reioniza'on


