Lorentz violation in gravity

Diego Blas

w/ B. Audren, E. Barausse, M. Ivanov, J. Lesgourgues, O. Pujolàs, S. Sibiryakov, K. Yagi, N. Yunes

Review (w/ E. Lim) 1412.4828 [gr-qc]

Modified gravity checklist

- Learning something fundamental about gravity/Nature
- Improve the short distance properties of GR (QG, BH)
- New ideas for cosmic acceleration/dark matter
- Interesting (testable) phenomenology

...the Lorentz violating (LV) case

Is there a 'fundamental' preferred frame in the universe?
 Hořava gravity as a proposal for QG
 Barvinski, DB, et al 15
 Natural dark energy and possible 5th forces/MOND
 Consequences at all scales (massless extra polarization)

Modified gravity checklist

- Learning something fundamental about gravity/Nature
- Improve the short distance properties of GR (QG, BH)
- New ideas for cosmic acceleration/dark matter
- Interesting (testable) phenomenology

...the Lorentz violating (LV) case sweet spot in modified gravity away from Vainshtein/chamaleons

Working with a preferred frame

Space-time filled by a preferred **time** direction associated to a time-like unit vector u_{μ}

Lagrangian ('low' energies)

Ingredients: u_{μ} , $g_{\mu\nu}$ **Khronometric** $u_{\mu} \equiv \frac{\partial_{\mu} \varphi}{\sqrt{\partial_{\alpha} \varphi \partial^{\alpha} \varphi}}$ DB, Pujolas, Sibiryakov 09 Horava 09 $\mathcal{L}_{\chi GR} = \mathcal{L}_{EH} + M_P^2 \sqrt{-g} \left(\lambda \left(\nabla^{\mu} u_{\mu} \right)^2 + \alpha \left(u^{\nu} \nabla_{\nu} u_{\mu} \right)^2 + \beta \nabla_{\mu} u_{\nu} \nabla^{\nu} u^{\mu} \right)$ **massless** spin 2 graviton: $\omega^2 = c_t^2 k^2$, $c_t^2 = \frac{1}{1-\beta}$ \checkmark massless scalar $\varphi = t + \chi$: $\omega^2 = c_\chi^2 \, \mathbf{k}^2$, $c_\chi^2 = \frac{\beta + \lambda}{2}$ Stable Minkowski & no gravitational Cherenkov:

$$0 , $c_t^2\geq 1,\ c_\chi^2\geq 1$$$

Einstein-æther: extra term $\gamma \nabla_{\mu} u_{\nu} \nabla^{\mu} u^{\nu}$ Jacobson, Mattingly 01

rightarrow extra **vector** $u_{\mu}u^{\mu} = 1$

Lagrangian ('low' energies)

Ingredients: u_{μ} , $g_{\mu\nu}$ **Khronometric** $u_{\mu} \equiv \frac{\partial_{\mu} \varphi}{\sqrt{\partial_{\alpha} \varphi \partial^{\alpha} \varphi}}$ DB, Pujolas, Sibiryakov 09 Horava 09 $\mathcal{L}_{\chi GR} = \mathcal{L}_{EH} + M_P^2 \sqrt{-g} \left(\lambda \left(\nabla^{\mu} u_{\mu} \right)^2 + \alpha \left(u^{\nu} \nabla_{\nu} u_{\mu} \right)^2 + \beta \nabla_{\mu} u_{\nu} \nabla^{\nu} u^{\mu} \right)$ **massless** spin 2 graviton: $\omega^2 = c_t^2 k^2$, $c_t^2 = \frac{1}{1 - \beta}$ \checkmark massless scalar $\varphi = t + \chi$: $\omega^2 = c_\chi^2 k^2$, $c_\chi^2 = \frac{\beta + \lambda}{\gamma}$ Stable Minkowski & no gravitational Cherenkov: 0<lpha<2 , $c_t^2\geq 1,\ c_v^2\geq 1$ **Einstein-æther**: extra term $\gamma \nabla_{\mu} u_{\nu} \nabla^{\mu} u^{\nu}$ Jacobson, Mattingly 01 $u_\mu u^\mu = 1$. Kh can be renormalized! Barvinski, DB, et al. 15 extra vector

+ higher derivatives: $\frac{1}{M_{\star}^{d-4}}O_{d>4}(u_{\mu},g_{\mu\nu},\nabla_{\mu})$

(Toy) potential at short distances

 $M_{\star}^{-1}\gtrsim \mu m$?

Matter Lagrangian

Matter Lagrangian

Ingredients: u_{μ} , $g_{\mu\nu}$ + SM Fields + DM + DE

 $\mathcal{L}_{m} = \mathcal{L}_{LI}(\text{SM}, \text{DM}, \text{DE}, g_{\mu\nu}) + \kappa_{SM} \mathcal{L}_{LV}(\text{SM}, g_{\mu\nu}, u_{\mu})$ $+ \kappa_{DM} \mathcal{L}_{LV}(\text{DM}, g_{\mu\nu}, u_{\mu}) + \kappa_{DE} \mathcal{L}_{LV}(\text{DE}, g_{\mu\nu}, u_{\mu})$

DM, DE: κ_{DM}, κ_{DE} ? to be answered by cosmology

1412.4828 [gr-qc] (review article w/ E. Lim)

Matter Lagrangian

Ingredients: u_{μ} , $g_{\mu\nu}$ + SM Fields + DM + DE

$$\mathcal{L}_{m} = \mathcal{L}_{LI}(\text{SM}, \text{DM}, \text{DE}, g_{\mu\nu}) + \kappa_{SM} \mathcal{L}_{LV}(\text{SM}, g_{\mu\nu}, a_{\mu}) \\ + \kappa_{DM} \mathcal{L}_{LV}(\text{DM}, g_{\mu\nu}, a_{\mu}) + \kappa_{DF} \mathcal{L}_{LV}(\text{DF}, g_{\mu\nu}, a_{\mu}) \\ \text{SM: e.g. } \bar{\psi} u^{\mu} u^{\nu} \gamma_{\mu} \partial_{\nu} \psi \quad \blacktriangleright \quad \omega_{\psi}^{2} = m_{\psi}^{2} + c^{2} k^{2} \\ \downarrow_{1-cond} \phi_{\mu} \downarrow_{10} \qquad \text{Oynamical explanation?} \\ \kappa_{\text{ostelecky, Liberati, Mattingly,...}} \text{ in the following } \kappa_{SM} = 0 \\ \end{bmatrix}$$

DM, DE: κ_{DM}, κ_{DE} ? to be answered by cosmology

1412.4828 [gr-qc] (review article w/ E. Lim)

Solar System Constraints (Kh)

Solar system (PN gravity)

DB, Pujolas, Sibiryakov 10

Weak field constraints summary

derived from situations with weak gravitational fields

Tests with compact objects improve both aspects!

Effects on astrophysical objects

Matter is not modified

 u_{μ}

 v^{μ}

Gravitation modified (coupling between gravitons and u_{μ})

Violation of **strong equivalence principle (SEP)** (Nordtvedt effect)

$$T_{\mu\nu} = T^m_{\mu\nu} + T^g_{\mu\nu} + T^u_{\mu\nu}$$
produces
$$q_{\mu\nu}, \quad u^{\mu}$$

Far away: point-particle description with extra coupling

$$S_{pp} = -\tilde{m} \int \mathrm{d}s \quad \blacktriangleright \quad S_{pp} = -\tilde{m} \int \mathrm{d}s \, f(u_{\mu}v^{\mu})$$

the **orbital** equations depend on $u_{\mu}v^{\mu}$

(analogous to the scalar-tensor case Damour Esposito-Farese 92)

Orbital effects: PN analysis

$$S_{pp} = -\tilde{m} \int ds f(u_{\mu}v^{\mu})$$
Slowly moving $u^{\mu}v_{\mu} \ll 1$

$$S_{ppA} = -\tilde{m}_{A} \int ds_{A} \left[(1 + \sigma_{A}(1 - u_{\mu}v^{\mu}) + O(u_{\mu}v^{\mu} - 1)^{2} \right]$$
sensitivity: encapsulates the strong-field effects
Newtonian limit of N-particles

$$\dot{v}_{A}^{i} = \sum_{B \neq A} \frac{-\mathcal{G}_{AB}m_{B}}{r_{AB}^{3}} r_{AB}^{i}$$

$$m_{A} \equiv \tilde{m}_{A}(1 + \sigma_{A}) \qquad \mathcal{G}_{AB} \equiv \frac{G_{N}}{(1 + \sigma_{A})(1 + \sigma_{B})}$$
SEP violated! $P^{i} = \tilde{m}_{1}v_{1}^{i} + \tilde{m}_{2}v_{2}^{i}$ not conserved!
dipolar radiation expected

Orbital effects: Dissipative sector

$$S_{ppA} = -\tilde{m}_A \int ds_A \left[(1 + \sigma_A (1 - u_\mu v^\mu) + O(u_\mu v^\mu - 1)^2) \right]$$

Yagi, DB, Barausse, Yunes 13

$$\dot{\frac{P_b}{P_b}} = -\frac{3}{2}\frac{\dot{E}}{E} = -\frac{192\pi}{5}\left(\frac{2\pi G_N m}{P_b}\right)^{5/3}\left(\frac{\mu}{m}\right)\frac{1}{P_b}\langle \mathcal{A}\rangle$$

$$s_A \equiv \frac{\sigma_A}{1+\sigma_A}, \quad \mathcal{S} \equiv s_1 m_1/m + s_2 m_2/m, \quad m \equiv m_1 + m_2, \quad \mu \equiv \frac{m_1 m_2}{m}$$

 $\mathcal{A}_i, \mathcal{C}$ functions of the LV parameters

GR: A = 1 no dipole

Constraints from damping of binaries (EA)

Yagi, DB, Yunes, Barausse 13

Mostly dipolar Quadrupolar + dipolar

Conservative dynamics of binaries (EA)

Strong 'effective' constraints on LV through 'strong' PPN $g_{0i} = -\frac{1}{c^3} \left[B_1^- \frac{G_N \tilde{m}_1}{r_1} v_1^i + \dots \right] \begin{cases} B_A^- = -\frac{7}{2} - \frac{1}{4} (\hat{\alpha}_1 - 2\hat{\alpha}_2) - \frac{1}{4} \hat{\alpha}_1 \\ B_A^- = -\frac{7}{2} - \frac{1}{4} (\alpha_1 - 2\alpha_2) \left(1 + \frac{2 - \alpha}{2\beta - \alpha} \right) - \dots \end{cases}$

source dependent and independent of weak PPN! but we know the sensitivities if we know the masses!

Yagi, DB, Yunes, Barausse 13

Constraints from binaries

Combined constraints from PSR J1141-6545, PSR J0348+0432, PSR J0737-3039, J1738+0333

A glimpse of cosmological constraints

Modified Friedmann equation

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G_c\rho \longrightarrow \text{modified BBN}$$

 $G_c(\alpha, \beta, \lambda) \neq G_N(\alpha)$ controls Newtonian dynamics (collapse) Modified clustering at large scales

There are extra degrees of freedom: enhanced dissipation

Modified primordial plasma (anisotropic stress)

CMB and (linear) **scale structure** changes

Linear structure formation

Kobayashi, Urakawa, Yamaguchi 10

$$\mathrm{d}s^2 = a(t)^2 \left[(1+2\phi)\mathrm{d}t^2 - \delta_{ij}(1-2\psi)\mathrm{d}x^i\mathrm{d}x^j \right]; \qquad \delta \equiv \frac{\rho}{\bar{\rho}} - 1$$

Faster Jeans instability: DM dom, subhorizon

$$\frac{k^2\phi}{a^2} = \frac{3H^2(1+\beta/2+3\lambda/2)}{2(1-\alpha/2)}\delta = \frac{3G_N}{2G_c}H^2\delta \quad ; \quad \delta''+2H\delta' = -\frac{k^2\phi}{a^2}$$

$$\delta \sim t^{\frac{1}{6}\left(-1 + \sqrt{1 + 24\frac{G_N}{G_c}}\right)}$$

Audren, Blas, Ivanov, Lesgourgues, Sibiryakov 14

Anisotropic stress

$$\phi - \psi = O(\beta)$$

Cosmological Constraints (Kh)

http://montepython.net/

Audren, Blas, Ivanov, Lesgourgues, Sibiryakov 14

(also DM)

Conclusions

- Exploring Lorentz violation yields a rich phenomenology with strong theoretical motivations (effective or fundamental)
- Lorentz violation modifies gravity at every scale (extra massless d.o.f. $\varphi = t + \chi$ and modified graviton)
- Solar system tests $\alpha_1^{PPN} \lesssim 10^{-4}$ $\alpha_2^{PPN} \lesssim 10^{-7}$ two unconstrained parameters!
- SEP violated: compact objects develop a u_{μ} charge (sensitivities)
- Modified orbits and dipolar GWs emission: both constrained by observation of pulsars in binaries

$$\beta, \ \lambda \lesssim O(.01)$$

All parameters constrained at percent level! (~ to cosmology)

Sensitivities for other objects! (including BHs)

More work on the waveform

Cosmological constraints beyond linear theory

More fundamental issues: BHs and emergence

How I: Hořava Gravity in a Nutshell

Toy model: Lifshitz scalar

$$\mathcal{L} = \phi \left[\partial_0^2 - \left(\frac{-\Delta}{M_\star^2} \right)^z \Delta \right] \left\{ \phi + \sum_n a_n \left(\frac{\phi}{M_P} \right)^n \right\}$$

$$\Delta \equiv \partial_i \partial_i$$

$$L \longrightarrow P$$
To compute amplitudes

$$I \sim \left(\int^{\Lambda_0} d\omega \int^{\Lambda_i} d^3 k_i \right)^L \left(\frac{1}{\omega^2 - \bar{k}^2 \left(\frac{\bar{k}^2}{M_\star^2} \right)^z + i\epsilon} \right)^{P-V} \underset{\Lambda_0 \sim \Lambda_i^{(2-z)L+2(z+1)}}{\uparrow}$$

$$\star z = 0 \quad (\text{LI/GR}): \sim \Lambda_i^{2(L+1)} \quad \text{grows with L !}$$

$$\star z = 2 \quad (\text{LV}) \qquad \sim \Lambda_i^6 \qquad \text{fixed !}$$
of counterterms may be finite

How I: Hořava Gravity in a Nutshell

 $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = N^{2}dt^{2} - \gamma_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$

Hořava 09

Broken diffeomorphisms: new group of covariance $x^i \mapsto \tilde{x}^i(x^j, t)$ $t \mapsto \tilde{t}(t)$ FDiff: Foliation preserving Diff Extra (gapless?) polarization expected

Preferred foliation of space-time

How I: Hořava Gravity in a Nutshell

Blas, Pujolàs, Sibiryakov 09

$$\begin{split} \mathrm{d}s^2 &= g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} = N^2\mathrm{d}t^2 - \gamma_{ij}(\mathrm{d}x^i + N^i\mathrm{d}t)(\mathrm{d}x^j + N^j\mathrm{d}t) \\ & \text{Covariant objects under FDiff} \\ K_{ij} &\sim \frac{\partial\gamma_{ij}}{\partial t} \sim \omega \gamma_{ij} \qquad {}^{(3)}R^i{}_{jkl} \sim \overline{k}^2\gamma_{ij} \qquad a_i \equiv \frac{\partial_i N}{N} \sim \mathbf{k}_i \phi \\ & \text{GR Lagrangian extended to} \\ \mathcal{L} &= M_P^2 N \sqrt{\gamma} \Big(\underbrace{K_{ij}K^{ij} - (1 - \lambda')(\gamma_{ij}K^{ij})^2}_{\partial_0^2} - (1 - \beta')^{(3)}R + \alpha' a_i a^i ... + \frac{\Delta^{2(3)}R}{M_\star^4} \Big) \\ & \text{Low energy (IR)} \qquad \text{Renormalizability} \\ & \text{Finite $\#$ of counterterms} \end{split}$$

How II: Khronometric Theory

Blas, Pujolàs, Sibiryakov 09

Diff invariance restored by adding a compensator: φ

Neutron Stars at O(v)

We consider an irrotational fluid for the NS $ds^2 = O(v^0) + 2vV(r,\theta)dtdr + 2vrS(r,\theta)dtd\theta + O(v^2),...$ In terms of Legendre polynomials

 $V(r, \theta) = \sum v_n(r) P_n(\cos\theta)$,... the different modes decouple! 3 ODE per mode!

To derive
$$\sigma_A$$
 remind

$$g_{0i} \supset -\frac{1}{c^3} B_1^-(\sigma_A) \frac{G_N \tilde{m}_1}{r_1} v_1^i$$
NS gauge

$$ds^2 = O(v^0) - 2v \left(1 + (B^- + B^+ + 2) \frac{G_N m}{r} \right) \cos \theta dt dr + \dots$$

$$n = 1 \text{ is enough!}$$

$$v_1(r) = v_1^\infty(r) \equiv -1 + A \frac{G_N m}{r} + (k_{A_2}A + k_{c_2}) \frac{G_N^2 m^2}{r^2} + \dots$$
all known (depend on m)

Computing the sensitivities

Matching of real solution to the effective one

$$S_{ppA} = -\tilde{m}_A \int ds_A \left[(1 + \sigma_A (1 - u_\mu v^\mu) + O(u_\mu v^\mu - 1)^2) \right]$$

Slowly moving star: $v^i \ll 1$ (velocity wrt æther)
Far-away from the star

$$g_{00} = 1 - \frac{1}{c^2} \frac{2G_N \tilde{m}_1}{r_1} + \frac{1}{c^4} \left[\frac{2G_N^2 \tilde{m}_1^2}{r_1^2} - \frac{3G_N \tilde{m}_1}{r_1} v_1^2 \left(1 + \sigma_1\right) \right],$$

$$g_{0i} = -\frac{1}{c^3} \left[B_1^- \frac{G_N \tilde{m}_1}{r_1} v_1^i + B_1^+ \frac{G_N \tilde{m}_1}{r_1} v_1^j \hat{r}_1^j \hat{r}_1^i \right], \quad g_{ij} = -\left(1 + \frac{1}{c^2} \frac{2G_N \tilde{m}_1}{r_1}\right) \delta_{ij}$$

Neutron Stars at O(v)

At $O(v^0)$: regularity at the center + EoS + continuity at R_* modified TOV Yagi, DB, Barausse, Yunes 13

Neutron Stars at O(v): Results

Yagi, DB, Yunes, Barausse 13

Matter Power Spectrum

$$\langle \delta(k) \delta(k')
angle \equiv \delta^{(3)}(k+k') P(k) k^3$$
 Blas, Ivanov, Sibiryakov 12

Cosmic Microwave Background

Audren, Blas, Lesgourgues, Sibiryakov 13

$$\ddot{\delta}_{\gamma} + k^2 c_s^2 \delta_{\gamma} \supset -\left(\frac{4k^2}{3}\psi\right)$$

$$k^2\psi\sim \frac{G_N}{G_c}\delta_\gamma \quad \blacktriangleright \quad c_s^{eff}$$

Shift of the peaks, change of zero point of oscillation and amplitude

http://class-code.net