An observable quantum gravity phenomenon?

Carlo Rovelli

An observable quantum gravity phenomenon?

Carlo Rovelli

Collaborators

Main idea "Planck Stars": Francesca Vidotto

Classical solution: Hal Haggard

Phenomenology: Aurélien Barrau, Francesca Vidotto, Boris Bolliet, Celine Weimer Loop quantum gravity calculation: Simone Speziale, Marios Christodoulou, Ilya Vilensky

An observable quantum gravity phenomenon?

- i. Black holes can decay non-perturbatively via quantum gravitational tunnelling, and explode.
- ii. Decay time can be estimated, and computed using Loop Quantum Gravity.
- iii. Primordial black holes could be exploding today, producing high and/or low energy components signals.
- iv. The expected low-energy frequency is close to that of the observed Fast Radio Bursts.
- v. Both signals have a characteristic distance-frequency curve.

An observable quantum gravity phenomenon?

- I. Basics of black hole tunneling decay
- II. Decay time
- III. Observations: High energy: gamma.
- IV. Observations: Low energy signal: Fast Radio Bursts?
- V. Distance-frequency curve

An observable quantum gravity phenomenon?

I. Basics of black hole tunneling decay

In (the approximation to Nature given by) **classical general relativity**, a black hole is stable.

In (the approximation to Nature given by) **classical general relativity**, a black hole is stable.

In **quantum field theory on a classical gravitational field**, a black hole decays via Hawking radiation, in an extremely long time. (10⁵⁰ Hubble times, for a stellar bh.)

In (the approximation to Nature given by) **classical general relativity**, a black hole is stable.

In **quantum field theory on a classical gravitational field**, a black hole decays via Hawking radiation, in an extremely long time. (10⁵⁰ Hubble times, for a stellar bh.)

In **quantum gravity**, a black hole can decay via a non perturbative quantum tunnelling.

What happens to the matter falling into black holes?

- It disappears (?)

- It creates "another universe" (Smolin)
- It stays there forever (nothing is forever)
- It comes out.

The relevant scale: Planck density

Example: a star collapses ($M \sim M_{\odot}$), Planck density is reached at 10⁻¹² cm

There is a relevant intermediate scale between the Schwarzschild radius L_S and the Planck scale L_P

$$L \sim \left(\frac{M}{M_P}\right)^{\frac{1}{3}} L_P$$

Planck Stars CR, Francesca Vidotto. IJMP D23 (2014), 1442026

From Loop Quantum Cosmology:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho \left(1 - \frac{\rho}{\rho_{Pl}}\right)$$

Pressure develops when matter density reaches The Planck density

The Hajicek-Kiefer bounce

Singularity avoidance by collapsing shells in quantum gravity Petr Hájíček, Clauss Kiefer. IJMP D, (2001), 775.

- Spherical symmetry
- Null shell of matter
- Classically: Finite dimensional phase space (v,p) separated in two disconnected components:
 - p>0: shell collapsing into white hole (future singularity)
 - p<0: shell emerging from a white hole (past singularity)

- Can a black hole truly tunnel into a white hole?

The Hajicek-Kiefer bounce

Singularity avoidance by collapsing shells in quantum gravity Petr Hájíček, Clauss Kiefer. IJMP D, (2001), 775.

- Spherical symmetry
- Null shell of matter
- Classically: Finite dimensional phase space (v,p) separated in two disconnected components:
 - p>0: shell collapsing into white hole (future singularity)
 - p<0: shell emerging from a white hole (past singularity)
- Formal quantization: transition between the two components
 - Can a black hole truly tunnel into a white hole?

Is this compatible with external **classical** GR?

Frolov, Vilkovinski '79

Frolov, Vilkovinski '79

Frolov, Vilkovinski '79

Stephen, t'Hooft, Whithing '93

Ashtekar, Bojowald '05

Frolov, Vilkovinski '79

Stephen, t'Hooft, Whithing '93

Ashtekar, Bojowald '05

Modesto '06

Frolov, Vilkovinski '79

Modesto '06

Frolov, Vilkovinski '79

Stephen, t'Hooft, Whithing '93

Ashtekar, Bojowald '05

Modesto '06

l, Rovelli '15

Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling Hal M. Haggard, CR arXiv:1407.0989

The metric:

Spherical symmetry:

$$ds^{2} = -F(u, v)dudv + r^{2}(u, v)(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Region I (Flat): $F(u_I, v_I) = 1, \quad r_I(u_I, v_I) = \frac{v_I - u_I}{2}$ Bounded by: $v_I = 0$

Region II (Schw.): $F(u, v) = \frac{32m^3}{r} e^{\frac{r}{2m}}$ $(1 - \frac{r}{2m}) e^{\frac{r}{2m}} = uv.$

Matching: $r_I(u_I, v_I) = r(u, v) \to u(u_I) = \frac{1}{v_o} \left(1 + \frac{u_I}{4m}\right) e^{\frac{u_I}{4m}}$

Region III (Quantum): a smooth interpolation

"A black hole is a short cut to the future"

black hole

Time outside: 10 billions years !

black hole

The metric of the black-to-white hole transition: parameters

The external metric is determined by two constants:

- m is the mass of the collapsing shell.

- δ is the radius at which the two shells meet in the Schwarzschild metric, which determines the external bounce time

The metric of the black-to-white hole transition: parameters

The external metric is determined by two constants:

- *m* is the mass of the collapsing shell.

- δ is the radius at which the two shells meet in the Schwarzschild metric, which determines the external bounce time

The full metric is determined by four constants:

 $\Delta > \delta$

 $\epsilon \sim \left(\frac{m}{m_P^3}\right)^{\frac{1}{3}} l_P$. Shell enters in quantum region

Maximal extension of quantum region

What does δ represent and what determines it?

An observable quantum gravity phenomenon?

- I. Basics of black hole tunneling decay
- II. Decay time

What determines δ ?

Quantum gravity
Covariant loop quantum gravity. Full definition.

Kinematics Boundary State space

Dynamics Bulk

Operators:

$$\begin{aligned} \mathcal{H}_{\Gamma} &= L^2 [SU(2)^L / SU(2)^N]_{\Gamma} \quad \ni \psi(h_l) \qquad \mathcal{H} = \lim_{\Gamma \to \infty} \mathcal{H}_{\Gamma} \\ \vec{L}_l &= \{L_l^i\}, i = 1, 2, 3 \text{ where } L^i \psi(h) \equiv \left. \frac{d}{dt} \psi(h e^{t\tau_i}) \right|_{t=0} \end{aligned}$$

(nodes, links)

Transition amplitudes
$$W_{\mathcal{C}}(h_l) = N_{\mathcal{C}} \int_{SU(2)} dh_{vf} \prod_f \delta(h_f) \prod_v A(h_{vf}) \qquad h_f = \prod_v h_{vf}$$

Vertex amplitude

$$A(h_{vf}) = \int_{SL(2,\mathbb{C})} dg'_e \prod_f \sum_j (2j+1) \ D^j_{mn}(h_{vf}) D^{\gamma(j+1)\,j}_{jmjn}(g_e g_{e'}^{-1})$$

e	м Г
v	
f	
\mathcal{C}	

4

spinfoam (vertices, edges, faces)

$$W = \lim_{\mathcal{C} \to \infty} W_{\mathcal{C}} \qquad 8\pi\gamma\hbar G = 1$$

A process and its amplitude

Boundary state $\Psi = \psi_{in} \otimes \psi_{out}$ Amplitude $A = W(\Psi)$

Spacetime region

→ Hamilton function: S(q,t,q',t')

In GR, distance and time measurements are field measurements like any other one: they are part of the **boundary data** of the problem

Boundary values of the gravitational field = geometry of box surface = distance and time separation of measurements

In GR, distance and time measurements are field measurements like any other one: they are part of the **boundary data** of the problem

Boundary values of the gravitational field = geometry of box surface = distance and time separation of measurements

Covariant loop quantum gravity. Calculation of T(m).

Boundary: $B_3 U B_3$ (Joined on a S_2)

Each B₃ can be triangulated by 4 isosceles tetrahedra.

The bulk cal be approximated to first order by two 4-simplices joined by a tetrahedron

Covariant loop quantum gravity. Calculation of T(m).

Boundary: $B_3 U B_3$ (Joined on a S_2)

Each B₃ can be triangulated by 4 isosceles tetrahedra.

The bulk cal be approximated to first order by two 4-simplices joined by a tetrahedron

Covariant loop quantum gravity. Calculation of T(m).

$$W(z,z') = \sum_{j_a, j_{ab}^{\pm}, l_a, l_{ab}^{\pm}} \left(\prod_a d_{j_a} \right) \left(\prod_{ab\pm} d_{j_{ab}} \right) e^{\sum_a (j_a(j_a+1)/\sigma^2 + zj_a) + \sum_{ab\pm} (j_{ab}^{\pm}(j_{ab}^{\pm}+1)/\sigma^2 + (z'+\phi_{ab}-\phi_{ba})j_{ab})} \\ \times \sum_{M_a^{\pm}, N_a^{\pm}} \left(\bigotimes_{a,\pm} f(M_a^{\pm}, N_a^{\pm}, j_a, j_{ab}^{\pm}, l_a, l_{ab}^{\pm}) \ i^{N_a^{\pm}, j_a, j_{ab}} \ R_{m, j_{ab}} \ R_{m, j_a}(\hat{\theta}) \right) \ \left(\bigotimes_{a,\pm} i^{M_a^{\pm}, l_a, l_{ab}} \right)_{\Gamma} .$$

$$f(M, N, j_a, l_a) = \sum_{p_1, p_2, p_3, p_4} \int_0^\infty dr \ \left(\bigotimes_a \ d_{j_a l_a p_a}(r) \right) \ i^{N, j_1, j_2, j_3, j_4} \ i^{M, l_1, l_2, l_3, l_4} \\ p_{1, p_2, p_3, p_4},$$

$$d_{jlp}(r) = \sqrt{d_j}\sqrt{d_k}$$
, $(te^{-r} + (1-t)e^r)^{i\gamma j-1}$,

What do we expect?

$$T = \begin{cases} \sim e^{m^2} \\ \sim m^3 \\ \sim m^2 \\ \sim m \ln m \end{cases}$$

Naive expectation from analogy with tunnelling in space Balanced by phase space factor?

Page time. Requiring that AMPS firewall are avoided

Minimal failure of local qft: $RT > L_{Planck}^{-1}$

First contribution from degenerate triangulation (too short!) Time from for Hawking radiation to emerge.

Estimating T(m) ?

$$\tau_R = \sqrt{1 - \frac{2M}{R} \left(R - a - 2M \ln \frac{a - 2M}{R - 2M} \right)}$$

Classicality parameter

$$q = \ell_{\mathsf{PI}} \mathcal{R} \tau_R,$$

here $\mathcal{R}\sim \frac{M}{R^3}$ measures strength of curvature & q<<1 means classical

 $q \sim 1$ for $a \sim 2M$ and τ_R large enough. It has a maximum at $R_q = \frac{7}{6}(2M)$ (outside horizon!) and requiring $q \sim 1$ gives $\tau_q \sim M^2$.

Quantum effect leak out the horizon

$T \sim m^2$

Planck stars

An observable quantum gravity phenomenon?

- I. Basics of black hole tunneling decay
- II. Decay time
- III. Observations: High energy signal

$T \sim m^2$

Primordial Black Holes

What? Primordial matter density fluctuations

- When? Early universe (typically reheating)
- Why? Density contrast $\delta \approx 0.45$
- How? Large possible spectrum of PBH

$$M \sim M_H \sim t$$
, $t \sim 0.3 g_*^{-\frac{1}{2}} T^{-2}$

Phenomenology

Because the black to white hole conversion proceeds rapidly compared to the Hawking time

$$E = Mc^2 \sim 10^{47} \mathrm{~ergs}$$

and its size is

$$R = \frac{2GM}{c^2} \sim .02 \text{ cm}.$$

This leads to the expectation of two signals:

- (i) a lower energy signal with $\lambda \sim R$
- (ii) a higher energy signal depending on how the content is liberated

• exploding now: $m(t)|_{t=t_H}$

 $\left\{ \right.$

 $R = \frac{2Gm}{c^2}$

• exploding now: $m(t)|_{t=t_H}$ $R = \frac{2Gm}{c^2}$

LOW ENERGY: size of the source \approx wavelength $\lambda_{predicted}$

HIGH ENERGY: energy of the particles liberated

• exploding now: $m(t)|_{t=t_H}$ $R = \frac{2Gm}{c^2}$

LOW ENERGY: size of the source ≈ wavelength λ_{predicted}
 HIGH ENERGY: energy of the particles liberated

■ fast process ?

• exploding now: $m(t)|_{t=t_H}$ $R = \frac{2Gm}{c^2}$

LOW ENERGY: size of the source ≈ wavelength λ_{predicted}
 HIGH ENERGY: energy of the particles liberated

■ fast process ?

the source disappears with the burst ?

• exploding now: $m(t)|_{t=t_H}$ $R = \frac{2Gm}{c^2}$

LOW ENERGY: size of the source ≈ wavelength λ_{predicted}
 HIGH ENERGY: energy of the particles liberated

■ fast process ?

the source disappears with the burst ?

• very compact object: big flux $E = mc^2$

• exploding now: $m(t)|_{t=t_H}$ $R = \frac{2Gm}{c^2}$

LOW ENERGY: size of the source ≈ wavelength λ_{predicted}
 HIGH ENERGY: energy of the particles liberated

■ fast process ?

the source disappears with the burst ?

• very compact object: big flux $E = mc^2$

Exponential decay: m² is favorite

• exploding now:
$$m = \sqrt{\frac{t_H}{4k}} \sim 1.2 \times 10^{23} \text{ kg}$$
 $R = \frac{2Gm}{c^2} \sim .02 \text{ cm}$

LOW ENERGY: size of the source \approx wavelength $\lambda_{predicted} \gtrsim .02$ cm **HIGH ENERGY:** energy of the particles liberated $\approx Tev$

■ fast process ?

the source disappears with the burst ?

• very compact object: big flux $E = mc^2 \sim 1.7 \times 10^{47} \text{ erg}$

High energy component

Matter forming the black hole experiences a short bounce time, a 2nd scale enters the problem the energy of the matter at formation

For $M \sim 10^{26}$ g this occurs when T_U was $\sim \text{TeV}$

This suggests a search for high energy Gamma Ray Bursts (CTA)

cfr. Dadhich, Narlikar, Appa Rao, 1974

Short Gamma Ray Burst

- the white hole should eject particles at the same temperature as the particles that felt in the black hole
- limited horizon due to absorption
 ~ 100 million light-years / z=0.01
- known GRB have energy ≪ Tev
- telescopes spanning large surfaces needed (CTA?)

Planck stars

An observable quantum gravity phenomenon?

- I. Basics of black hole tunneling decay
- II. Decay time
- III. Observations: High energy signal
- IV. Observations: Low energy signal and Fast Radio Bursts

Detectable? Already detected?

 $\lambda = 20 \ cm$

0

Planck star phenomenology

Aurelien Barrau, Carlo Rovelli. Phys.Lett. B739 (2014) 405

Fast Radio Bursts and White Hole Signals Aurélien Barrau, Celle Houde, Centre Statuted, Phys.Rev. D90 (2014) 12, 127503

~m² primordial black hole give signals e radio: Fast Radio Bur<mark>sts?</mark>

- Observed at: Parkes, Arecibo
- Estimated emitted power: 10³⁸ erg
- Physical source: unknown

10

8

Short

- Observed width ~ milliseconds
- No Long GRB associated
 - No long afterglow

Punctual

- No repetition
- Enormous flux density
 Energy ≈ 10³⁸ erg
- Likely Extragalactic
 Dispersion Measure: z≤0.5
- 10⁴ event/day
 A pretty common object?

Short

- Observed width ~ milliseconds
- No Long GRB associated
 - No long afterglow

Punctual

- No repetition
- Enormous flux density
 Energy ≈ 10³⁸ erg
- Likely Extragalactic
 Dispersion Measure: z≤0.5
- 10⁴ event/day
 A pretty common object?

■ λ≈20 cm

Short

- Observed width ~ milliseconds
- No Long GRB associated
 - No long afterglow

Punctual

- No repetition
- Enormous flux density
 Energy ≈ 10³⁸ erg
- Likely Extragalactic
 Dispersion Measure: z≤0.5
- 10⁴ event/day
 A pretty common object?

Are these bouncing Black Holes?

Barrau, Rovelli, Vidotto 1409.4031

■ *λ*≈20 cm

size of the source $\approx \lambda_{predicted} \gtrsim .02 \text{ cm}$

Short

- Observed width ~ milliseconds
- No Long GRB associated
 - No long afterglow

Punctual

- No repetition
- Enormous flux density
 Energy ≈ 10³⁸ erg
- Likely Extragalactic
 Dispersion Measure: z≤0.5
- 10⁴ event/day
 A pretty common object?

Are these bouncing Black Holes?

 $\lambda \approx 20 \text{ cm}$

Barrau, Rovelli, Vidotto 1409.4031

size of the source $\approx \lambda_{predicted} \gtrsim .02 \text{ cm}$

fast process

Short

Observed width ~ milliseconds

■ No Long GRB associated

No long afterglow

Punctual

No repetition

Enormous flux density Energy ≈ 10³⁸ erg

Likely Extragalactic Dispersion Measure: z≤0.5

10⁴ event/day A pretty common object?

Are these bouncing Black Holes?

 $\lambda \approx 20 \text{ cm}$

Barrau, Rovelli, Vidotto 1409.4031

size of the source $\approx \lambda_{predicted} \gtrsim .02 \text{ cm}$

Short

Observed width ~ milliseconds

- No Long GRB associated
 - No long afterglow

Punctual

- No repetition
- Enormous flux density
 Energy ≤ 10³⁸ erg
- Likely Extragalactic
 Dispersion Measure: z≤0.5
- 10⁴ event/day
 A pretty common object?

Are these bouncing Black Holes?

■fast process

sudden explosion
Fast Radio Burst

- size of the source $\approx \lambda_{predicted} \gtrsim .02 \text{ cm}$ $\lambda \approx 20 \text{ cm}$ Short • Observed width \approx milliseconds fast process No Long GRB associated No long afterglowsudden explosion Punctual ■ No repetition the source disappears with the burst Enormous flux density • Energy $\leq 10^{38}$ erg Likely Extragalactic
 - Dispersion Measure: z≤0.5
- 10⁴ event/day
 A pretty common object?

Are these bouncing Black Holes?

Fast Radio BurstBarrau, Rovelli, Vidotto 1409.4031 $= \lambda \approx 20 \text{ cm}$ = size of the source $\approx \lambda_{predicted} \gtrsim .02 \text{ cm}$ = Short= Observed width \approx milliseconds= fast process= No Long GRB associated= sudden explosion

- Punctual
 - No repetition
- Enormous flux density
 - Energy ≈ 10³⁸ erg
- Likely Extragalactic
 Dimension Measure
 - Dispersion Measure: z≈0.5
- 10⁴ event/day
 A pretty common object?

Are these bouncing Black Holes?

the source disappears with the burst

• very compact object $\rightarrow 10^{47}$ erg

Fast Radio Burst Barrau, Rovelli, Vidotto 1409.4031 size of the source $\approx \lambda_{predicted} \gtrsim .02 \text{ cm}$ $\lambda \approx 20 \text{ cm}$ ■ Short • Observed width \approx milliseconds fast process ■ No Long GRB associated No long afterglowsudden explosion Punctual ■ No repetition the source disappears with the burst Enormous flux density • Energy $\leq 10^{38}$ erg • very compact object $\rightarrow 10^{47}$ erg Likely Extragalactic ■ Dispersion Measure: z≤0.5 peculiar distance/energy relation $\square 10^4$ event/day

A pretty common object?

Are these bouncing Black Holes?

Fast Radio Burst Barrau, Rovelli, Vidotto 1409.4031 size of the source $\approx \lambda_{predicted} \gtrsim .02 \text{ cm}$ $\lambda \approx 20 \text{ cm}$ ■ Short • Observed width \approx milliseconds fast process ■ No Long GRB associated No long afterglowsudden explosion Punctual ■ No repetition the source disappears with the burst Enormous flux density • Energy $\leq 10^{38}$ erg • very compact object $\rightarrow 10^{47}$ erg Likely Extragalactic ■ Dispersion Measure: z≤0.5 peculiar distance/energy relation $\square 10^4$ event/day

A pretty common object?

Are these bouncing Black Holes?

$\sqrt{\frac{t_{Hubble}}{t_{Planck}}} \ l_{Planck} \ \sim \ 1cm$

Planck stars

An observable quantum gravity phenomenon?

- I. Basics of black hole tunneling decay
- II. Decay time
- III. Observations: High energy: gamma.
- IV. Observations: Low energy signal: Fast Radio Bursts?
- V. Distance-frequency curve

Signature: distance/energy relation

Fast Radio Bursts and White Hole Signals Aurélien Barrau, CR, Francesca Vidotto. Phys.Rev. D90 (2014) 12, 127503

$$\lambda_{obs} \sim \frac{2Gm}{c^2} (1+z) \sqrt{\frac{H_0^{-1}}{6 \, k \Omega_\Lambda^{1/2}}} \, \sinh^{-1} \left[\left(\frac{\Omega_\Lambda}{\Omega_M}\right)^{1/2} (z+1)^{-3/2} \right]$$

Integrated emission

 $\tau \sim m^2$

Summary

- Technical results: black holes may tunnel to white holes locally and explode.

- The tunnelling time can be computed with LQG.

- T~m^{2:} Fast Radio Bursts and high energy Gamma phenomenology: first quantum gravity signals?

- Wavelength-to-distance relation signature.

Main idea of observability	Planck Stars CR, Francesca Vidotto. arXiv:1401.6562
Phenomenology	Planck star phenomenology Aurelien Barrau, Carlo Rovelli. Phys.Lett. B739 (2014) 405
Classical solution and T~m ²	Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling Hal M. Haggard, CR arXiv:1407.0989
Fast Radio Bursts	Fast Radio Bursts and White Hole Signals Aurélien Barrau, CR, Francesca Vidotto. Phys.Rev. D90 (2014) 12, 127503
Phenomenology	Phenomenology of bouncing black holes in quantum gravity: a closer look Aurelien Barrau, Boris Bolliet, Francesca Vidotto, Celine Weimer. arXiv:1507.05424:

Why consider a classicality parameter with power scalings and not the exponential decay of a tunneling process?

$$q = \ell_{\mathsf{PI}} \mathcal{R} \tau_R \qquad \text{vs.} \qquad q = \mathcal{N} e^{-S_E}$$

If we take $\mathcal N$ to be the large number of states of the black hole

 $\mathcal{N} \sim e^{S_{\rm BH}}$

and the Euclidean action comes from a corner term

$$e^{-S_E} = e^{-\eta A} = e^{-\eta M^2}$$

these terms could cancel.

[S. Mathur]

Quantum gravity effects may take hold outside the horizon!