The variation of the fine-structure constant from disformal couplings

Jurgen Mifsud

Consortium for Fundamental Physics, School of Mathematics and Statistics The University of Sheffield

In collaboration with Carsten van de Bruck and Nelson J. Nunes

 $28th$ Texas Symposium on Relativistic Astrophysics – Genève

J. Mifsud The variation of the fine-structure constant from disformal couplings $15/12/15$ 1/33

Outline

Introduction–Is α [a constant of Nature?](#page-2-0)

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- [Identification of](#page-25-0) α
- **•** [Evolution of](#page-31-0) α
- **[Cosmology](#page-34-0)** o [FRW](#page-39-0)
- [Examples](#page-49-0)
	- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
	- [Disformal & conformal couplings](#page-57-0)
	- [Disformal, conformal & electromagnetic couplings](#page-59-0)

[Conclusion](#page-61-0)

 200

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- [Identification of](#page-25-0) α
- \bullet [Evolution of](#page-31-0) α
- [Cosmology](#page-34-0) **e** [FRW](#page-39-0)
- **•** [Examples](#page-49-0)
	- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
	- **•** [Disformal & conformal couplings](#page-57-0)
	- [Disformal, conformal & electromagnetic couplings](#page-59-0)

 \leftarrow

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- \bullet Effective $(3+1)$ –dimensional constants can vary in space and time in
- -

$$
\frac{\dot{\alpha}}{\alpha}\Big|_{0} = (-1.6 \pm 2.3) \times 10^{-17} \text{ yr}^{-1},
$$

Oklo natural reactor [E.D. Davis & L. Hamdan '15]

$$
\frac{|\Delta \alpha|}{\alpha} < 1.1 \times 10^{-8}, \quad z \simeq 0.16,
$$

$$
\frac{^{187}\text{Re meteorites [K.A. Olive et al '04]}}{\alpha} = (-8 \pm 8) \times 10^{-7}, \quad z \simeq 0.43,
$$

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- \bullet Effective (3+1)–dimensional constants can vary in space and time in higher–dimensional theories.
-

$$
\frac{\dot{\alpha}}{\alpha}\Big|_0 = (-1.6 \pm 2.3) \times 10^{-17} \text{ yr}^{-1},
$$
\n• Oklo natural reactor [E.D. Davis & L. Hamdan '15]\n
$$
\frac{|\Delta \alpha|}{\alpha} < 1.1 \times 10^{-8}, \quad z \simeq 0.16,
$$
\n• ¹⁸⁷Re meteorites [K.A. Olive et *aI* '04]\n
$$
\frac{\Delta \alpha}{\alpha} = (-8 \pm 8) \times 10^{-7}, \quad z \simeq 0.43,
$$

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- \bullet Effective (3+1)–dimensional constants can vary in space and time in higher–dimensional theories.
- Current observations look for variations in the fine–structure constant:
	- Atomic Clocks [T. Rosenband et al '08]

$$
\frac{\dot{\alpha}}{\alpha}\bigg|_0 = (-1.6 \pm 2.3) \times 10^{-17} \text{ yr}^{-1},
$$

Oklo natural reactor [E.D. Davis & L. Hamdan '15]

$$
\frac{|\Delta\alpha|}{\alpha}<1.1\times10^{-8},\quad z\simeq0.16,
$$

 \bullet ¹⁸⁷Re meteorites [K.A. Olive *et al* '04]

$$
\frac{\Delta \alpha}{\alpha} = (-8 \pm 8) \times 10^{-7}, \quad z \simeq 0.43,
$$

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- **•** Effective $(3+1)$ –dimensional constants can vary in space and time in higher–dimensional theories.
- Current observations look for variations in the fine–structure constant:
	- The cosmic microwave background (CMB) radiation [Planck Coll. '15]

$$
\frac{\Delta \alpha}{\alpha} = (3.6 \pm 3.7) \times 10^{-3}, \quad z \simeq 10^3,
$$

- Astrophysical data:
	- Keck/ HIRES-141 absorbers (MM method) [M.T. Murphy et al '04]

$$
\left(\frac{\Delta \alpha}{\alpha}\right)_w = (-0.57 \pm 0.11) \times 10^{-5}, \quad 0.2 < z < 4.2,
$$

• VLT/ UVES-154 absorbers (MM method) [J.A. King et al '12]

$$
\left(\frac{\Delta\alpha}{\alpha}\right)_w = (0.208 \pm 0.124) \times 10^{-5}, \quad 0.2 < z < 3.7,
$$

J. Mifsud The variation of the fine-structure constant from disformal couplings 15/12/15 4 / 33

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- **•** Effective $(3+1)$ –dimensional constants can vary in space and time in higher–dimensional theories.
- Current observations look for variations in the fine–structure constant:
	- Astrophysical data:
		- Keck/ HIRES Si IV absorption systems (AD method) [M.T. Murphy et al '01]

$$
\left(\frac{\Delta\alpha}{\alpha}\right)_w = (-0.5 \pm 1.3) \times 10^{-5}, \quad 2 < z < 3,
$$

Comparison of HI 21–cm line with molecular rotational absorption spectra [M.T. Murphy et al '01]

$$
\frac{\Delta \alpha}{\alpha} = (-0.10 \pm 0.22) \times 10^{-5}, \quad z = 0.25,
$$

$$
\frac{\Delta \alpha}{\alpha} = (-0.08\pm0.27)\times10^{-5}, \quad z=0.68,
$$

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- \bullet Effective (3+1)–dimensional constants can vary in space and time in higher–dimensional theories.
- Current observations look for variations in the fine–structure constant:
	- Astrophysical data:

• Recent data [P. Molaro et al '13, T.M. Evans et al '14]

z	$(\Delta\alpha/\alpha)\times10^6$	Spectrograph
1.08	4.3 ± 3.4	HIRES
1.14	-7.5 ± 5.5	UVES/HIRES/HDS
1.15	-0.1 ± 1.8	UVES
1.15	0.5 ± 2.4	HARPS/UVES
1.34	-0.7 ± 6.6	UVES/HIRES/HDS
1.58	-1.5 ± 2.6	UVES
1.66	-4.7 ± 5.3	HIRES
1.69	1.3 ± 2.6	UVES
1.74	-7.9 ± 6.2	HIRES
1.80	-6.4 ± 7.2	UVES/HIRES/HDS \equiv

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- [Identification of](#page-25-0) α
- [Evolution of](#page-31-0) α
- [Cosmology](#page-34-0)
	- **[FRW](#page-39-0)**
- **•** [Examples](#page-49-0)
	- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
	- **·** [Disformal & conformal couplings](#page-57-0)
	- **•** [Disformal, conformal & electromagnetic couplings](#page-59-0)

[Conclusion](#page-61-0)

We consider the following action:

$$
S = S_{\text{grav}}\left(g_{\mu\nu}, \phi\right) + S_{\text{matter}}\left(\tilde{g}_{\mu\nu}^{(m)}\right) + S_{\text{EM}}\left(A_{\mu}, \tilde{g}_{\mu\nu}^{(r)}\right) \tag{1}
$$

$$
\tilde{g}^{(m)}_{\mu\nu} = C_m g_{\mu\nu} + D_m \phi_{,\mu} \phi_{,\nu} ,
$$
\n
$$
\tilde{g}^{(r)}_{\mu\nu} = C_r g_{\mu\nu} + D_r \phi_{,\mu} \phi_{,\nu} ,
$$
\n(3)

We consider the following action:

$$
S = S_{\text{grav}}(g_{\mu\nu}, \phi) + S_{\text{matter}}\left(\tilde{g}_{\mu\nu}^{(m)}\right) + S_{\text{EM}}\left(A_{\mu}, \tilde{g}_{\mu\nu}^{(r)}\right) \tag{1}
$$

such that,

$$
\tilde{g}_{\mu\nu}^{(m)} = C_m g_{\mu\nu} + D_m \phi_{,\mu} \phi_{,\nu} ,
$$
\n
$$
\tilde{g}_{\mu\nu}^{(r)} = C_r g_{\mu\nu} + D_r \phi_{,\mu} \phi_{,\nu} ,
$$
\n(2)

We consider the following action:

$$
S = S_{\text{grav}}(g_{\mu\nu}, \phi) + S_{\text{matter}}\left(\tilde{g}_{\mu\nu}^{(m)}\right) + S_{\text{EM}}\left(A_{\mu}, \tilde{g}_{\mu\nu}^{(r)}\right) \tag{1}
$$

such that,

$$
\tilde{g}^{(m)}_{\mu\nu} = C_m g_{\mu\nu} + D_m \phi_{,\mu} \phi_{,\nu} \tag{2}
$$

$$
\tilde{g}_{\mu\nu}^{(r)} = C_r g_{\mu\nu} + D_r \phi_{,\mu} \phi_{,\nu} , \qquad (3)
$$

where

 $C_{r,m}$: conformal factors
 $D_{r,m}$: disformal couplings $\Big\}$ both taken to be functions of ϕ only

つへへ

The electromagnetic sector is specified by

$$
S_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu}, \tag{4}
$$

-
-
-
- -

The electromagnetic sector is specified by

$$
S_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu}, \tag{4}
$$

where

-
-
-
- -

The electromagnetic sector is specified by

$$
S_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu}, \tag{4}
$$

where

\bullet $F_{\mu\nu}$ is the standard antisymmetric Faraday tensor,

-
- The function $h(\phi)$ is the direct coupling between the electromagnetic

The electromagnetic sector is specified by

$$
S_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu}, \tag{4}
$$

where

- \bullet $F_{\mu\nu}$ is the standard antisymmetric Faraday tensor,
- j^{μ} is the four–current,
- The function $h(\phi)$ is the direct coupling between the electromagnetic

The frame in which matter is decoupled from the scalar degree of

The electromagnetic sector is specified by

$$
S_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu}, \tag{4}
$$

where

- \bullet $F_{\mu\nu}$ is the standard antisymmetric Faraday tensor,
- j^{μ} is the four–current,
- The function $h(\phi)$ is the direct coupling between the electromagnetic field and the scalar.

The frame in which matter is decoupled from the scalar degree of

The electromagnetic sector is specified by

$$
S_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu}, \tag{4}
$$

where

- \bullet $F_{\mu\nu}$ is the standard antisymmetric Faraday tensor,
- j^{μ} is the four–current,
- The function $h(\phi)$ is the direct coupling between the electromagnetic field and the scalar.

We aim to work in the Jordan frame

The frame in which matter is decoupled from the scalar degree of freedom.

Indeed, we know that

$$
\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left(D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} . \tag{5}
$$

$$
\mathcal{S}_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[\tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{\alpha\alpha} \phi^{\beta} \right] F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} ,
$$

Indeed, we know that

$$
\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left(D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} . \tag{5}
$$

Then, in terms of this metric, the electromagnetic sector becomes

$$
\mathcal{S}_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[\tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{\alpha\alpha} \phi^{\beta} \right] F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} ,
$$

(6)

Indeed, we know that

$$
\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left(D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} . \tag{5}
$$

Then, in terms of this metric, the electromagnetic sector becomes

$$
\mathcal{S}_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[\tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{\alpha\beta} \right] F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} ,
$$
\n(6)

where we raise the indices with the metric $\tilde{\mathsf{g}}_{\mu\nu}^{(m)}$ and define

$$
Z = \left(1 + \frac{B}{A} \tilde{g}^{\mu\nu}_{(m)} \partial_{\mu} \phi \partial_{\nu} \phi \right)^{1/2}
$$

$$
\gamma^2 = \frac{B}{A + B \tilde{g}^{\mu\nu}_{(m)} \partial_{\mu} \phi \partial_{\nu} \phi}.
$$

,

 200

Indeed, we know that

$$
\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left(D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} . \tag{5}
$$

Then, in terms of this metric, the electromagnetic sector becomes

$$
\mathcal{S}_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[\tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{\alpha\alpha} \phi^{\beta} \right] F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} ,
$$
\n(6)

 \bullet Variation with respect to respect to A_{μ} :

 QQ

Indeed, we know that

$$
\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left(D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} . \tag{5}
$$

Then, in terms of this metric, the electromagnetic sector becomes

$$
\mathcal{S}_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[\tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{\alpha\phi\beta} \right] F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} ,
$$
\n(6)

Gauge invariance: $\tilde{\nabla}_{\mu}~j^{\mu}=0$

 \bullet Variation with respect to respect to A_{μ} :

 QQQ

Indeed, we know that

$$
\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left(D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} . \tag{5}
$$

Then, in terms of this metric, the electromagnetic sector becomes

$$
\mathcal{S}_{\text{EM}} = -\frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[\tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{\alpha\phi\beta} \right] F_{\mu\alpha} F_{\nu\beta} - \int d^4x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} ,
$$
\n(6)

- Gauge invariance: $\tilde{\nabla}_{\mu}~j^{\mu}=0$
- Variation with respect to respect to A_{μ} :

$$
\tilde{\nabla}_{\epsilon}\left(h(\phi)ZF^{\epsilon\rho}\right)-\tilde{\nabla}_{\epsilon}\left(h(\phi)Z\gamma^{2}\phi^{,\beta}\left(\tilde{g}_{(m)}^{\epsilon\nu}\phi^{,\rho}-\tilde{g}_{(m)}^{\rho\nu}\phi^{,\epsilon}\right)F_{\nu\beta}\right)=j^{\rho}\quad(7)
$$

where we again raise the indices with $\widetilde{g}^{(m)}_{\mu\nu}$.

 QQQ

[Disformal Electrodynamics](#page-9-0)

• [The Model](#page-9-0)

• [Identification of](#page-25-0) α

- [Evolution of](#page-31-0) α
- [Cosmology](#page-34-0)
	- **[FRW](#page-39-0)**
- **•** [Examples](#page-49-0)
	- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
	- **·** [Disformal & conformal couplings](#page-57-0)
	- **•** [Disformal, conformal & electromagnetic couplings](#page-59-0)

[Conclusion](#page-61-0)

 \leftarrow

• Set
$$
\tilde{g}^{(m)}_{\mu\nu} = \eta_{\mu\nu}
$$
 and consider ϕ to depend on time only.

From the field equation (7), and identifying the electric field by

$$
\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)}\tag{8}
$$

 \bullet By integrating this equation over a volume V, it is straightforward to

$$
V(r) = \frac{ZQ}{4\pi h(\phi)r}
$$
\n(9)

- Set $\widetilde{g}^{(m)}_{\mu\nu}=\eta_{\mu\nu}$ and consider ϕ to depend on time only.
- From the field equation (7), and identifying the electric field by $E^i = F^{i0}$, we find the field equation for the electric field to be given by

$$
\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)}\tag{8}
$$

where $\rho = j^0$ is the charge density.

 \bullet By integrating this equation over a volume V, it is straightforward to

$$
V(r) = \frac{ZQ}{4\pi h(\phi)r}
$$
\n(9)

Comparing this to the standard expression for the tree-level-potential

- Set $\widetilde{g}^{(m)}_{\mu\nu}=\eta_{\mu\nu}$ and consider ϕ to depend on time only.
- From the field equation (7), and identifying the electric field by
	- $E^i = F^{i0}$, we find the field equation for the electric field to be given by

$$
\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)}\tag{8}
$$

where $\rho = j^0$ is the charge density.

 \bullet By integrating this equation over a volume \mathcal{V} , it is straightforward to derive the electrostatic potential

$$
V(r) = \frac{ZQ}{4\pi h(\phi)r}
$$
 (9)

where Q is the total charge contained in V .

Comparing this to the standard expression for the tree-level-potential

- Set $\widetilde{g}^{(m)}_{\mu\nu}=\eta_{\mu\nu}$ and consider ϕ to depend on time only.
- From the field equation (7), and identifying the electric field by $E^i = F^{i0}$, we find the field equation for the electric field to be given by

$$
\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)}\tag{8}
$$

where $\rho = j^0$ is the charge density.

 \bullet By integrating this equation over a volume V, it is straightforward to derive the electrostatic potential

$$
V(r) = \frac{ZQ}{4\pi h(\phi)r}
$$
 (9)

where Q is the total charge contained in V .

Comparing this to the standard expression for the tree-level-potential from QED, one finds that α has the following dependence on Z and h:

- Set $\widetilde{g}^{(m)}_{\mu\nu}=\eta_{\mu\nu}$ and consider ϕ to depend on time only.
- From the field equation (7), and identifying the electric field by $E^i = F^{i0}$, we find the field equation for the electric field to be given by

$$
\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)}\tag{8}
$$

where $\rho = j^0$ is the charge density.

 \bullet By integrating this equation over a volume \mathcal{V} , it is straightforward to derive the electrostatic potential

$$
V(r) = \frac{ZQ}{4\pi h(\phi)r}
$$
 (9)

where Q is the total charge contained in V .

Comparing this to the standard expression for the tree-level-potential from QED, one finds that α has the following dependence on Z and h:

$$
\boxed{\alpha \propto \frac{Z}{h(\phi)}}
$$
 (Note that $\alpha \propto h^{-1}(\phi)$ when $\tilde{g}_{\mu\nu}^{(m)} \equiv \tilde{g}_{\mu\nu}^{(r)}$.) (10)

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- [Identification of](#page-25-0) α
- **•** [Evolution of](#page-31-0) α
- [Cosmology](#page-34-0) **• [FRW](#page-39-0)**
- **•** [Examples](#page-49-0)
	- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
	- **·** [Disformal & conformal couplings](#page-57-0)
	- **•** [Disformal, conformal & electromagnetic couplings](#page-59-0)

[Conclusion](#page-61-0)

 200

Disformal Electrodynamics: Evolution of α

Using

$$
\alpha \propto \frac{Z}{h(\phi)}, \quad Z = \left(1 + \frac{B}{A} \tilde{g}^{\mu\nu}_{(m)} \partial_{\mu} \phi \partial_{\nu} \phi\right)^{1/2} \tag{11}
$$

• We define the redshift evolution of α by the quantity

$$
\frac{\Delta\alpha}{\alpha}(z) \equiv \frac{\alpha(z) - \alpha(z = 0)}{\alpha(z = 0)} = \frac{h(\phi_0)Z(z)}{h(\phi(z))Z_0} - 1,\tag{12}
$$

where ϕ_0 is the field value today and Z_0 is the value of Z evaluated today.

In a spatially–flat FRW gravitational metric, the temporal variation of

$$
\frac{\dot{\alpha}}{\alpha} = \frac{1}{Z} \left(\frac{\partial Z}{\partial \phi} \dot{\phi} + \frac{\partial Z}{\partial \dot{\phi}} \ddot{\phi} \right) - \frac{1}{h} \frac{dh}{d\phi} \dot{\phi}.
$$
 (13)

Disformal Electrodynamics: Evolution of α

Using

$$
\alpha \propto \frac{Z}{h(\phi)}, \quad Z = \left(1 + \frac{B}{A} \tilde{g}^{\mu\nu}_{(m)} \partial_{\mu} \phi \partial_{\nu} \phi\right)^{1/2} \tag{11}
$$

• We define the redshift evolution of α by the quantity

$$
\frac{\Delta\alpha}{\alpha}(z) \equiv \frac{\alpha(z) - \alpha(z = 0)}{\alpha(z = 0)} = \frac{h(\phi_0)Z(z)}{h(\phi(z))Z_0} - 1,\tag{12}
$$

where ϕ_0 is the field value today and Z_0 is the value of Z evaluated today.

In a spatially–flat FRW gravitational metric, the temporal variation of α reduces to the following

$$
\frac{\dot{\alpha}}{\alpha} = \frac{1}{Z} \left(\frac{\partial Z}{\partial \phi} \dot{\phi} + \frac{\partial Z}{\partial \dot{\phi}} \ddot{\phi} \right) - \frac{1}{h} \frac{dh}{d\phi} \dot{\phi}.
$$
 (13)

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- [Identification of](#page-25-0) α
- [Evolution of](#page-31-0) α

• [Cosmology](#page-34-0)

- **[FRW](#page-39-0)**
- **•** [Examples](#page-49-0)
	- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
	- **·** [Disformal & conformal couplings](#page-57-0)
	- **•** [Disformal, conformal & electromagnetic couplings](#page-59-0)

[Conclusion](#page-61-0)

 200

We now specify our gravitational-scalar action, which leads us to the EF theory described by the following action

$$
S = \int d^4x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right) + S_{\text{matter}} \left(\tilde{g}^{(m)}_{\mu\nu} \right) - \frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} ,
$$
(14)

where the last term in the action above describes the dynamics of the CMB photons.

• Field equations

$$
G^{\mu\nu} = T^{\mu\nu}_{\phi} + T^{\mu\nu}_{(m)} + T^{\mu\nu}_{(r)}, \tag{15}
$$

 200

We now specify our gravitational-scalar action, which leads us to the EF theory described by the following action

$$
S = \int d^4x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right) + S_{\text{matter}} \left(\tilde{g}^{(m)}_{\mu\nu} \right) - \frac{1}{4} \int d^4x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} ,
$$
(14)

where the last term in the action above describes the dynamics of the CMB photons.

• Field equations

$$
G^{\mu\nu} = T^{\mu\nu}_{\phi} + T^{\mu\nu}_{(m)} + T^{\mu\nu}_{(r)}, \qquad (15)
$$

Klein-Gordon equation

$$
\Box \phi - V' = -Q_m - Q_r, \qquad (16)
$$

• Conservation equations

$$
\nabla_{\mu} T^{\mu}_{(m)\nu} = Q_m \phi_{,\nu} , \quad \nabla_{\mu} T^{\mu}_{(r)\nu} = Q_r \phi_{,\nu} , \qquad (17)
$$

 \leftarrow

$$
Q_{m} = \frac{C'_{m}}{2C_{m}} T_{(m)} + \frac{D'_{m}}{2C_{m}} \phi_{,\mu} \phi_{,\nu} T^{\mu\nu}_{(m)} - \nabla_{\mu} \left[\frac{D_{m}}{C_{m}} \phi_{,\nu} T^{\mu\nu}_{(m)} \right],
$$
(18)

$$
Q_{r} = \frac{C'_{r}}{2C_{r}} T_{(r)} + \frac{D'_{r}}{2C_{r}} \phi_{,\mu} \phi_{,\nu} T^{\mu\nu}_{(r)} + \frac{h'}{h} C_{r}^{2} \sqrt{1 + \frac{D_{r}}{C_{r}} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu}} \tilde{\mathcal{L}}_{EM}
$$

$$
- \nabla_{\mu} \left[\frac{D_{r}}{C_{r}} \phi_{,\nu} T^{\mu\nu}_{(r)} \right].
$$
(18)

 QQ

Klein-Gordon equation

$$
\Box \phi - V' = -Q_m - Q_r, \qquad (16)
$$

 \Box

Conservation equations

$$
\nabla_{\mu} T^{\mu}_{(m)\nu} = Q_m \phi_{,\nu} , \quad \nabla_{\mu} T^{\mu}_{(r)\nu} = Q_r \phi_{,\nu} , \qquad (17)
$$

where,

$$
Q_{m} = \frac{C'_{m}}{2C_{m}} T_{(m)} + \frac{D'_{m}}{2C_{m}} \phi_{,\mu} \phi_{,\nu} T^{\mu\nu}_{(m)} - \nabla_{\mu} \left[\frac{D_{m}}{C_{m}} \phi_{,\nu} T^{\mu\nu}_{(m)} \right],
$$
(18)

$$
Q_{r} = \frac{C'_{r}}{2C_{r}} T_{(r)} + \frac{D'_{r}}{2C_{r}} \phi_{,\mu} \phi_{,\nu} T^{\mu\nu}_{(r)} + \frac{h'}{h} C_{r}^{2} \sqrt{1 + \frac{D_{r}}{C_{r}} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu}} \tilde{\mathcal{L}}_{EM}
$$

$$
- \nabla_{\mu} \left[\frac{D_{r}}{C_{r}} \phi_{,\nu} T^{\mu\nu}_{(r)} \right].
$$
(13)

(19)

 QQ

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- \bullet [Identification of](#page-25-0) α
- \bullet [Evolution of](#page-31-0) α

• [Cosmology](#page-34-0) [FRW](#page-39-0)

- **•** [Examples](#page-49-0)
	- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
	- [Disformal & conformal couplings](#page-57-0)
	- [Disformal, conformal & electromagnetic couplings](#page-59-0)

 \leftarrow

 200

We shall now consider perfect fluid energy-momentum tensors for radiation and matter in the EF, radiation in the RF and matter in the JF as follows

$$
T_{(r)}^{\mu\nu} = (\rho_r + \rho_r)u^{\mu}u^{\nu} + \rho_r g^{\mu\nu}, \quad T_{(m)}^{\mu\nu} = (\rho_m + \rho_m)u^{\mu}u^{\nu} + \rho_m g^{\mu\nu}, \quad (20)
$$

$$
\tilde{T}_{(r)}^{\mu\nu} = (\tilde{\rho}_r + \tilde{\rho}_r)\tilde{u}^{\mu}\tilde{u}^{\nu} + \tilde{\rho}_r \tilde{g}_{(r)}^{\mu\nu}, \quad \tilde{T}_{(m)}^{\mu\nu} = (\tilde{\rho}_m + \tilde{\rho}_m)\tilde{u}^{\mu}\tilde{u}^{\nu} + \tilde{\rho}_m \tilde{g}_{(m)}^{\mu\nu}, \quad (21)
$$

$$
\ddot{\phi} + 3H\dot{\phi} + V' = Q_m + Q_r, \qquad (22)
$$

$$
\dot{\rho}_m + 3H(\rho_m + \rho_m) = -Q_m \dot{\phi},\qquad(23)
$$

$$
\dot{\rho}_r + 3H(\rho_r + \rho_r) = -Q_r \dot{\phi},\qquad(24)
$$

derivative. We introduce $\eta \equiv \tilde{\mathcal{L}}_{EM}/\tilde{\rho}_r$ in what f[oll](#page-39-0)o[w](#page-41-0)[s.](#page-39-0)

J. Mifsud The variation of the fine-structure constant from disformal couplings 15/12/15 17 / 33

We shall now consider perfect fluid energy-momentum tensors for radiation and matter in the EF, radiation in the RF and matter in the JF as follows

$$
T_{(r)}^{\mu\nu} = (\rho_r + \rho_r)u^{\mu}u^{\nu} + \rho_r g^{\mu\nu}, \quad T_{(m)}^{\mu\nu} = (\rho_m + \rho_m)u^{\mu}u^{\nu} + \rho_m g^{\mu\nu}, \quad (20)
$$

$$
\tilde{T}_{(r)}^{\mu\nu} = (\tilde{\rho}_r + \tilde{\rho}_r)\tilde{u}^{\mu}\tilde{u}^{\nu} + \tilde{\rho}_r \tilde{g}_{(r)}^{\mu\nu}, \quad \tilde{T}_{(m)}^{\mu\nu} = (\tilde{\rho}_m + \tilde{\rho}_m)\tilde{u}^{\mu}\tilde{u}^{\nu} + \tilde{\rho}_m \tilde{g}_{(m)}^{\mu\nu}, \quad (21)
$$

Furthermore, we will now consider a zero curvature FRW EF metric, $\mathsf{d} \mathsf{s}^2 = \mathsf{g}_{\mu\nu} \mathsf{d} \mathsf{x}^\mu \mathsf{d} \mathsf{x}^\nu = - \mathsf{d} t^2 + \mathsf{a}^2(t) \delta_{ij} \mathsf{d} \mathsf{x}^i \mathsf{d} \mathsf{x}^j,$ leading to

$$
\ddot{\phi} + 3H\dot{\phi} + V' = Q_m + Q_r, \qquad (22)
$$

$$
\dot{\rho}_m + 3H(\rho_m + \rho_m) = -Q_m \dot{\phi},\qquad(23)
$$

$$
\dot{\rho}_r + 3H(\rho_r + \rho_r) = -Q_r \dot{\phi}, \qquad (24)
$$

where $H = \dot{a}/a$ is the Hubble parameter and dot represents an EF time derivative. We introduce $\eta \equiv \tilde{\mathcal{L}}_{\textit{EM}}/\tilde{\rho}_\textit{r}$ in what f[oll](#page-40-0)o[w](#page-42-0)[s.](#page-39-0)

J. Mifsud The variation of the fine-structure constant from disformal couplings 15/12/15 17 / 33

$$
Q_m = \frac{A_r}{A_r A_m - D_r D_m \rho_r \rho_m} \left[B_m - \frac{D_m B_r}{A_r} \rho_m \right],
$$
\n
$$
Q_r = \frac{A_m}{A_r A_m - D_r D_m \rho_r \rho_m} \left[B_r - \frac{D_r B_m}{A_m} \rho_r \right],
$$
\n(26)

$$
A_r = C_r + D_r \left(\rho_r - \dot{\phi}^2 \right) , \quad A_m = C_m + D_m \left(\rho_m - \dot{\phi}^2 \right) , \quad (27)
$$

$$
B_r = \frac{1}{2} C'_r (3w_r - 1) \rho_r - \frac{1}{2} D'_r \dot{\phi}^2 \rho_r + \frac{h'}{h} \left(C_r - D_r \dot{\phi}^2 \right) \eta \rho_r + D_r \rho_r \left[\frac{C'_r}{C_r} \dot{\phi}^2 + V' + 3H \dot{\phi} (1 + w_r) \right],
$$
(28)

←ロト ←何ト

ik ⊞i⊁ik

$$
B_m = \frac{1}{2} C'_m \left(3w_m - 1 \right) \rho_m - \frac{1}{2} D'_m \dot{\phi}^2 \rho_m
$$

+
$$
D_m \rho_m \left[\frac{C'_m}{C} \dot{\phi}^2 + V' + 3H \dot{\phi} \left(1 + w_m \right) \right]
$$

J. Mifsud The variation of the fine-structure constant from disformal couplings 15/12/15 18 / 33

Þ

 299

$$
Q_m = \frac{A_r}{A_r A_m - D_r D_m \rho_r \rho_m} \left[B_m - \frac{D_m B_r}{A_r} \rho_m \right],
$$
(25)

$$
Q_r = \frac{A_m}{A_r A_m - D_r D_m \rho_r \rho_m} \left[B_r - \frac{D_r B_m}{A_m} \rho_r \right],
$$
(26)

where

$$
A_r = C_r + D_r \left(\rho_r - \dot{\phi}^2 \right) , \quad A_m = C_m + D_m \left(\rho_m - \dot{\phi}^2 \right) , \quad (27)
$$

$$
B_{r} = \frac{1}{2} C_{r}' (3w_{r} - 1) \rho_{r} - \frac{1}{2} D_{r}' \dot{\phi}^{2} \rho_{r} + \frac{h'}{h} (C_{r} - D_{r} \dot{\phi}^{2}) \eta \rho_{r} + D_{r} \rho_{r} \left[\frac{C_{r}'}{C_{r}} \dot{\phi}^{2} + V' + 3H \dot{\phi} (1 + w_{r}) \right],
$$

\n
$$
B_{m} = \frac{1}{2} C_{m}' (3w_{m} - 1) \rho_{m} - \frac{1}{2} D_{m}' \dot{\phi}^{2} \rho_{m} + D_{m} \rho_{m} \left[\frac{C_{m}'}{C_{m}} \dot{\phi}^{2} + V' + 3H \dot{\phi} (1 + w_{m}) \right]
$$

4 D F

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\} \right.$ $\left\{ \left\vert \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$ $\left\{ \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

э

• EF Friedmann equations

$$
H^{2} = \frac{1}{3} \left(\rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[3 \left(\rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left(4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]
$$
(29)

-
- Non–interacting dark sector (Type la supernova)

$$
\dot{\rho}_{\rm DE}^{\rm eff} = -3H(1 + w_{\rm eff})\rho_{\rm DE}^{\rm eff}, H^2 = \frac{1}{3}\left(a^{-4}\rho_{0,r} + a^{-3}\rho_{0,m} + \rho_{\rm DE}^{\rm eff}\right)
$$

• EF Friedmann equations

$$
H^{2} = \frac{1}{3} \left(\rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[3 \left(\rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left(4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]
$$
(29)

- The scalar field characterizing the disformal couplings is also responsible for the current acceleration of the Universe, i.e., it is the dark energy.
- Non–interacting dark sector (Type la supernova)

$$
\dot{\rho}_{\rm DE}^{\rm eff} = -3H(1+w_{\rm eff})\rho_{\rm DE}^{\rm eff}, H^2 = \frac{1}{3}\left(a^{-4}\rho_{0,r} + a^{-3}\rho_{0,m} + \rho_{\rm DE}^{\rm eff}\right)
$$

$$
\nu_{\text{eff}} = \frac{p_{\phi} + \rho_{r} \left(w_{r} - \frac{1}{3} a^{-4} \frac{\rho_{0,r}}{\rho_{r}} \right)}{\rho_{m} + \rho_{r} + \rho_{\phi} - a^{-4} \rho_{0,r} - a^{-3} \rho_{0,m}}
$$

つひい

• EF Friedmann equations

$$
H^{2} = \frac{1}{3} \left(\rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[3 \left(\rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left(4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]
$$
(29)

- The scalar field characterizing the disformal couplings is also responsible for the current acceleration of the Universe, i.e., it is the dark energy.
- Non–interacting dark sector (Type Ia supernova)

$$
\underbrace{\dot{\rho}_{\text{DE}}^{\text{eff}}=-3H(1+w_{\text{eff}})\rho_{\text{DE}}^{\text{eff}}, H^2=\frac{1}{3}\left(a^{-4}\rho_{0,r}+a^{-3}\rho_{0,m}+\rho_{\text{DE}}^{\text{eff}}\right)}_{\rho_{\text{eff}}=\frac{\rho_{\phi}+\rho_{r}\left(w_{r}-\frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_{r}}\right)}{\rho_{m}+\rho_{r}+\rho_{\phi}-a^{-4}\rho_{0,r}-a^{-3}\rho_{0,m}}=\frac{\rho_{\phi}+\rho_{r}\left(w_{r}-\frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_{r}}\right)}{\rho_{\text{DE}}^{\text{eff}}}
$$

つひい

• EF Friedmann equations

$$
H^{2} = \frac{1}{3} \left(\rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[3 \left(\rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left(4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]
$$
(29)

- The scalar field characterizing the disformal couplings is also responsible for the current acceleration of the Universe, i.e., it is the dark energy.
- Non–interacting dark sector (Type Ia supernova)

$$
\underbrace{\rho_{\text{DE}}^{\text{eff}} = -3H(1 + w_{\text{eff}})\rho_{\text{DE}}^{\text{eff}}}{\rho_{\text{m}} + \rho_{r} \left(w_{r} - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_{r}}\right)}_{\text{pr}} = \frac{\rho_{\phi} + \rho_{r} \left(w_{r} - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_{r}}\right)}{\rho_{\text{m}} + \rho_{r} + \rho_{\phi} - a^{-4}\rho_{0,r} - a^{-3}\rho_{0,m}} = \frac{\rho_{\phi} + \rho_{r} \left(w_{r} - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_{r}}\right)}{\rho_{\text{DE}}^{\text{eff}}}
$$
\n(30)

• EF Friedmann equations

$$
H^{2} = \frac{1}{3} \left(\rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[3 \left(\rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left(4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]
$$
(29)

- The scalar field characterizing the disformal couplings is also responsible for the current acceleration of the Universe, i.e., it is the dark energy.
- Non–interacting dark sector (Type Ia supernova)

$$
\underbrace{\rho_{\rm DE}^{\rm eff} = -3H(1 + w_{\rm eff})\rho_{\rm DE}^{\rm eff}}_{\rho_{\rm m} + \rho_r + \rho_r + \rho_{\phi} - a^{-4}\rho_{0,r} - a^{-3}\rho_{0,m}} + \rho_{\rm DE}^{\rm eff} \underbrace{\rho_{\phi} + \rho_r \left(w_r - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_r} \right)}_{\rho_{\rm B}}}{\rho_{\rm DE}^{\rm eff}} = \frac{p_{\phi} + \rho_r \left(w_r - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_r} \right)}_{\rho_{\rm DE}^{\rm eff}} \tag{30}
$$

つひひ

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- [Identification of](#page-25-0) α
- [Evolution of](#page-31-0) α
- [Cosmology](#page-34-0) **• [FRW](#page-39-0)**

• [Examples](#page-49-0)

- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
- **·** [Disformal & conformal couplings](#page-57-0)
- **•** [Disformal, conformal & electromagnetic couplings](#page-59-0)

[Conclusion](#page-61-0)

 200

We specify the following form of couplings and potential:

$$
C_i(\phi) = \beta_i e^{x_i \phi} , D_i(\phi) = M_i^{-4} e^{y_i \phi},
$$

$$
V(\phi) = M_V^4 e^{-\lambda \phi} , h(\phi) = 1 - \zeta(\phi - \phi_0),
$$

such that the introduced parameters are tuned in order to be in agreement with the observational data on the variation of α together with the cosmological parameters.

つひひ

We specify the following form of couplings and potential:

$$
C_i(\phi) = \beta_i e^{x_i \phi} , D_i(\phi) = M_i^{-4} e^{y_i \phi},
$$

$$
V(\phi) = M_V^4 e^{-\lambda \phi} , h(\phi) = 1 - \zeta(\phi - \phi_0),
$$

such that the introduced parameters are tuned in order to be in agreement with the observational data on the variation of α together with the cosmological parameters.

つひひ

We specify the following form of couplings and potential:

$$
C_i(\phi) = \beta_i e^{x_i \phi} , D_i(\phi) = M_i^{-4} e^{y_i \phi} ,
$$

$$
V(\phi) = M_V^4 e^{-\lambda \phi} , h(\phi) = 1 - \zeta(\phi - \phi_0),
$$

such that the introduced parameters are tuned in order to be in agreement with the observational data on the variation of α together with the cosmological parameters.

We specify the following form of couplings and potential:

$$
C_i(\phi) = \beta_i e^{x_i \phi} , D_i(\phi) = M_i^{-4} e^{y_i \phi},
$$

$$
V(\phi) = M_V^4 e^{-\lambda \phi} , h(\phi) = 1 - \zeta(\phi - \phi_0),
$$

such that the introduced parameters are tuned in order to be in agreement with the observational data on the variation of α together with the cosmological parameters.

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- [Identification of](#page-25-0) α
- \bullet [Evolution of](#page-31-0) α
- [Cosmology](#page-34-0) **e** [FRW](#page-39-0)

• [Examples](#page-49-0)

[Disformal/ Disformal & electromagnetic couplings](#page-54-0)

- **•** [Disformal & conformal couplings](#page-57-0)
- [Disformal, conformal & electromagnetic couplings](#page-59-0)

 200

*Disformal/ Disformal & electromagnetic couplings

4.0.3

 298

*Disformal/ Disformal & electromagnetic couplings

J. Mifsud The variation of the fine-structure constant from disformal couplings 15/12/15 26 / 33

4 日下

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- [Identification of](#page-25-0) α
- \bullet [Evolution of](#page-31-0) α
- [Cosmology](#page-34-0) **e** [FRW](#page-39-0)

• [Examples](#page-49-0)

[Disformal/ Disformal & electromagnetic couplings](#page-54-0)

[Disformal & conformal couplings](#page-57-0)

[Disformal, conformal & electromagnetic couplings](#page-59-0)

 200

**Disformal & conformal couplings

J. Mifsud The variation of the fine-structure constant from disformal couplings 15/12/15 28 / 33

4 日下 ∢●

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- \bullet [Identification of](#page-25-0) α
- \bullet [Evolution of](#page-31-0) α
- [Cosmology](#page-34-0) **e** [FRW](#page-39-0)

• [Examples](#page-49-0)

- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
- [Disformal & conformal couplings](#page-57-0)
- [Disformal, conformal & electromagnetic couplings](#page-59-0)

 200

***Disformal, conformal & electromagnetic couplings

J. Mifsud The variation of the fine-structure constant from disformal couplings 15/12/15 30 / 33

4.0.3

[Disformal Electrodynamics](#page-9-0)

- **[The Model](#page-9-0)**
- [Identification of](#page-25-0) α
- \bullet [Evolution of](#page-31-0) α
- [Cosmology](#page-34-0) **e** [FRW](#page-39-0)
- **•** [Examples](#page-49-0)
	- [Disformal/ Disformal & electromagnetic couplings](#page-54-0)
	- [Disformal & conformal couplings](#page-57-0)
	- [Disformal, conformal & electromagnetic couplings](#page-59-0)

[Conclusion](#page-61-0)

 \leftarrow

 200

- A variation in the fine–structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual
- Laboratory measurements with molecular and nuclear clocks are
- -
	-
	-

- A variation in the fine–structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are
- Better constrained data is expected from high-resolution ultra-stable
	-
	-
	-

- A variation in the fine–structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as 10^{-21} yr $^{-1}.$
- Better constrained data is expected from high-resolution ultra-stable
	-

- A variation in the fine–structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as 10^{-21} yr $^{-1}.$
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
	- PEPSI at the LBT
	-
	-

- A variation in the fine–structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as 10^{-21} yr $^{-1}.$
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
	- PEPSI at the LBT
	-
	-

- A variation in the fine–structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as 10^{-21} yr $^{-1}.$
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
	- PEPSI at the LBT
	- **ESPRESSO at the VLT**
	-

- A variation in the fine–structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as 10^{-21} yr $^{-1}.$
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
	- PEPSI at the LBT
	- **ESPRESSO at the VLT**
	- **e** FLT-Hires at the F-FLT

Thank You

 \circ