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Introduction–Is α a constant of Nature?

Dirac came up with the idea on the variation of the fundamental
constants of Nature in his ’large numbers hypothesis’.
Effective (3+1)–dimensional constants can vary in space and time in
higher–dimensional theories.
Current observations look for variations in the fine–structure
constant:

Atomic Clocks [T. Rosenband et al ‘08]

α̇

α

∣∣∣∣
0

= (−1.6± 2.3)× 10−17 yr−1,

Oklo natural reactor [E.D. Davis & L. Hamdan ‘15]

|∆α|
α

< 1.1× 10−8, z ' 0.16,

187Re meteorites [K.A. Olive et al ‘04]

∆α

α
= (−8± 8)× 10−7, z ' 0.43,

Dirac came up with the idea on the variation of the fundamental
constants of Nature in his ’large numbers hypothesis’.
Effective (3+1)–dimensional constants can vary in space and time in
higher–dimensional theories.
Current observations look for variations in the fine–structure
constant:

Astrophysical data:
Recent data [P. Molaro et al ‘13, T.M. Evans et al ‘14]

Object z (∆α/α) × 106 Spectrograph

Three sources 1.08 4.3 ± 3.4 HIRES
HS1549+1919 1.14 −7.5 ± 5.5 UVES/HIRES/HDS
HE0515-4414 1.15 −0.1 ± 1.8 UVES
HE0515-4414 1.15 0.5 ± 2.4 HARPS/UVES
HS1549+1919 1.34 −0.7 ± 6.6 UVES/HIRES/HDS
HE0001-2340 1.58 −1.5 ± 2.6 UVES
HE1104-1805A 1.66 −4.7 ± 5.3 HIRES
HE2217-2818 1.69 1.3 ± 2.6 UVES
HS1946+7658 1.74 −7.9 ± 6.2 HIRES
HS1549+1919 1.80 −6.4 ± 7.2 UVES/HIRES/HDS
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Disformal Electrodynamics: The Model

We consider the following action:

S = Sgrav (gµν , φ) + Smatter

(
g̃ (m)
µν

)
+ SEM

(
Aµ, g̃

(r)
µν

)
(1)

such that,

g̃ (m)
µν = Cmgµν + Dmφ,µφ,ν , (2)

g̃ (r)
µν = Crgµν + Drφ,µφ,ν , (3)

where

Cr ,m : conformal factors

Dr ,m : disformal couplings

}
both taken to be functions of φ only
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Disformal Electrodynamics: The Model

The electromagnetic sector is specified by

SEM = −1

4

∫
d4x

√
−g̃ (r)h(φ)g̃µν(r) g̃

αβ
(r) FµαFνβ −

∫
d4x

√
−g̃ (m)g̃µν(m) jνAµ,

(4)
where

Fµν is the standard antisymmetric Faraday tensor,

jµ is the four–current,

The function h(φ) is the direct coupling between the electromagnetic
field and the scalar.

We aim to work in the Jordan frame

The frame in which matter is decoupled from the scalar degree of
freedom.
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Disformal Electrodynamics: The Model

Indeed, we know that

g̃ (r)
µν =

Cr

Cm
g̃ (m)
µν +

(
Dr −

CrDm

Cm

)
φ,µφ,ν ≡ Ag̃ (m)

µν + Bφ,µφ,ν . (5)

Then, in terms of this metric, the electromagnetic sector becomes

SEM =− 1

4

∫
d4x

√
−g̃ (m)h(φ)Z

[
g̃µν(m)g̃

αβ
(m) − 2γ2g̃µν(m)φ

,αφ,β
]
FµαFνβ

−
∫

d4x

√
−g̃ (m)g̃µν(m) jνAµ ,

(6)

Gauge invariance: ∇̃µ jµ = 0

Variation with respect to respect to Aµ:

∇̃ε (h(φ)ZF ερ)− ∇̃ε
(
h(φ)Zγ2φ,β

(
g̃ εν(m)φ

,ρ − g̃ρν(m)φ
,ε
)
Fνβ

)
= jρ (7)

where we again raise the indices with g̃
(m)
µν .
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Disformal Electrodynamics: Identification of α

Set g̃
(m)
µν = ηµν and consider φ to depend on time only.

From the field equation (7), and identifying the electric field by
E i = F i0, we find the field equation for the electric field to be given by

∇ · E =
Zρ

h(φ)
(8)

where ρ = j0 is the charge density.
By integrating this equation over a volume V, it is straightforward to
derive the electrostatic potential

V (r) =
ZQ

4πh(φ)r
(9)

where Q is the total charge contained in V.
Comparing this to the standard expression for the tree-level-potential
from QED, one finds that α has the following dependence on Z and h:

α ∝ Z

h(φ)
(Note that α ∝ h−1(φ) when g̃ (m)

µν ≡ g̃ (r)
µν .) (10)
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Disformal Electrodynamics: Evolution of α

Using

α ∝ Z

h(φ)
, Z =

(
1 +

B

A
g̃µν(m)∂µφ∂νφ

)1/2

(11)

We define the redshift evolution of α by the quantity

∆α

α
(z) ≡ α(z)− α(z = 0)

α(z = 0)
=

h(φ0)Z (z)

h(φ(z))Z0
− 1, (12)

where φ0 is the field value today and Z0 is the value of Z evaluated
today.

In a spatially–flat FRW gravitational metric, the temporal variation of
α reduces to the following

α̇

α
=

1

Z

(
∂Z

∂φ
φ̇+

∂Z

∂φ̇
φ̈

)
− 1

h

dh

dφ
φ̇. (13)
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Disformal Electrodynamics: Cosmology

We now specify our gravitational-scalar action, which leads us to the EF
theory described by the following action

S =

∫
d4x
√
−g
(

1

2
R − 1

2
gµν∂µφ∂νφ− V (φ)

)
+ Smatter

(
g̃ (m)
µν

)
− 1

4

∫
d4x

√
−g̃ (r)h(φ)g̃µν(r) g̃

αβ
(r) FµαFνβ ,

(14)

where the last term in the action above describes the dynamics of the
CMB photons.

Field equations
Gµν = Tµν

φ + Tµν
(m) + Tµν

(r) , (15)
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Disformal Electrodynamics: Cosmology

Klein-Gordon equation

�φ− V ′ = −Qm − Qr , (16)

Conservation equations

∇µTµ
(m)ν = Qmφ,ν , ∇µTµ

(r)ν = Qrφ,ν , (17)

where,

Qm =
C ′m

2Cm
T(m) +

D ′m
2Cm

φ,µφ,νT
µν
(m) −∇µ

[
Dm

Cm
φ,νT

µν
(m)

]
, (18)

Qr =
C ′r

2Cr
T(r) +

D ′r
2Cr

φ,µφ,νT
µν
(r) +

h′

h
C 2
r

√
1 +

Dr

Cr
gµνφ,µφ,ν L̃EM

−∇µ
[
Dr

Cr
φ,νT

µν
(r)

]
.

(19)
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Disformal Electrodynamics: Cosmology–FRW

We shall now consider perfect fluid energy-momentum tensors for radiation
and matter in the EF, radiation in the RF and matter in the JF as follows

Tµν
(r) = (ρr + pr )uµuν + prg

µν , Tµν
(m) = (ρm + pm)uµuν + pmg

µν , (20)

T̃µν
(r) = (ρ̃r + p̃r )ũµũν + p̃r g̃

µν
(r) , T̃µν

(m) = (ρ̃m + p̃m)ũµũν + p̃mg̃
µν
(m),

(21)

Furthermore, we will now consider a zero curvature FRW EF metric,
ds2 = gµνdx

µdxν = −dt2 + a2(t)δijdx
idx j , leading to

φ̈+ 3Hφ̇+ V ′ = Qm + Qr , (22)

ρ̇m + 3H(ρm + pm) = −Qmφ̇, (23)

ρ̇r + 3H(ρr + pr ) = −Qr φ̇, (24)

where H = ȧ/a is the Hubble parameter and dot represents an EF time
derivative. We introduce η ≡ L̃EM/ρ̃r in what follows.
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Disformal Electrodynamics: Cosmology–FRW

Qm =
Ar

ArAm − DrDmρrρm

[
Bm −

DmBr

Ar
ρm

]
, (25)

Qr =
Am

ArAm − DrDmρrρm

[
Br −

DrBm

Am
ρr

]
, (26)

where

Ar = Cr + Dr

(
ρr − φ̇2

)
, Am = Cm + Dm

(
ρm − φ̇2

)
, (27)

Br =
1

2
C ′r (3wr − 1) ρr −

1

2
D ′r φ̇

2ρr +
h′

h

(
Cr − Dr φ̇

2
)
ηρr

+ Drρr

[
C ′r
Cr
φ̇2 + V ′ + 3Hφ̇ (1 + wr )

]
,

Bm =
1

2
C ′m (3wm − 1) ρm −

1

2
D ′mφ̇

2ρm

+ Dmρm

[
C ′m
Cm

φ̇2 + V ′ + 3Hφ̇ (1 + wm)

]
(28)
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Disformal Electrodynamics: Cosmology–FRW

EF Friedmann equations

H2 =
1

3
(ρm + ρr + ρφ) , Ḣ = −1

6

[
3
(
ρm + φ̇2

)
+ ρr

(
4− Dr

Cr
φ̇2

)]
(29)

The scalar field characterizing the disformal couplings is also
responsible for the current acceleration of the Universe, i.e., it is the
dark energy.

Non–interacting dark sector (Type Ia supernova)

ρ̇eff
DE = −3H(1 + weff)ρeff

DE, H
2 =

1

3

(
a−4ρ0,r + a−3ρ0,m + ρeff

DE

)
︸ ︷︷ ︸

weff =
pφ + ρr

(
wr − 1

3a
−4 ρ0,r

ρr

)
ρm + ρr + ρφ − a−4ρ0,r − a−3ρ0,m

=
pφ + ρr

(
wr − 1

3a
−4 ρ0,r

ρr

)
ρeff

DE
(30)
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6

[
3
(
ρm + φ̇2

)
+ ρr

(
4− Dr

Cr
φ̇2

)]
(29)

The scalar field characterizing the disformal couplings is also
responsible for the current acceleration of the Universe, i.e., it is the
dark energy.

Non–interacting dark sector (Type Ia supernova)

ρ̇eff
DE = −3H(1 + weff)ρeff

DE, H
2 =

1

3

(
a−4ρ0,r + a−3ρ0,m + ρeff

DE

)
︸ ︷︷ ︸

weff =
pφ + ρr

(
wr − 1

3a
−4 ρ0,r

ρr

)
ρm + ρr + ρφ − a−4ρ0,r − a−3ρ0,m

=
pφ + ρr

(
wr − 1

3a
−4 ρ0,r

ρr

)
ρeff

DE
(30)

J. Mifsud The variation of the fine-structure constant from disformal couplings 15/12/15 19 / 33



1 Introduction–Is α a constant of Nature?

2 Disformal Electrodynamics
The Model
Identification of α
Evolution of α
Cosmology

FRW

Examples
Disformal/ Disformal & electromagnetic couplings
Disformal & conformal couplings
Disformal, conformal & electromagnetic couplings

3 Conclusion

J. Mifsud The variation of the fine-structure constant from disformal couplings 15/12/15 20 / 33



Disformal Electrodynamics: Examples

We specify the following form of couplings and potential:

Ci (φ) = βie
xiφ , Di (φ) = M−4

i eyiφ,

V (φ) = M4
V e
−λφ, h(φ) = 1− ζ(φ− φ0),

such that the introduced parameters are tuned in order to be in
agreement with the observational data on the variation of α together
with the cosmological parameters.

Parameter Estimated value

w0,φ −1.006± 0.045
H0 (67.8± 0.9) km s−1Mpc−1

Ω0,m 0.308± 0.012
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Disformal Electrodynamics: Examples

We specify the following form of couplings and potential:

Ci (φ) = βie
xiφ , Di (φ) = M−4

i eyiφ,

V (φ) = M4
V e
−λφ, h(φ) = 1− ζ(φ− φ0),

such that the introduced parameters are tuned in order to be in
agreement with the observational data on the variation of α together
with the cosmological parameters.

Ex Mr 6= Mm Mm βm xm |ζ| MV λ

* ∼ meV ∼ meV 1 0 < 5× 10−6 2.69 meV 0.45
** ∼ meV 15 meV 8 0.14 0 2.55 meV 0.45

*** ∼ meV 15 meV 8 0.14 < 5× 10−6 2.55 meV 0.45
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i eyiφ,

V (φ) = M4
V e
−λφ, h(φ) = 1− ζ(φ− φ0),

such that the introduced parameters are tuned in order to be in
agreement with the observational data on the variation of α together
with the cosmological parameters.

Ex (α̇/α)|0 × 1017 |∆α/α|zCMB

* −2.14 ∼ −1.62 10−8 ∼ 10−6

** −2.41 ∼ 0.70 10−8 ∼ 10−7

*** −2.10 ∼ −1.24 10−7 ∼ 10−6
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A variation in the fine–structure constant can be induced by disformal
couplings provided that the radiation and matter disformal coupling
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Such a variation is enhanced in the presence of the usual
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