# The variation of the fine-structure constant from disformal couplings

#### Jurgen Mifsud

Consortium for Fundamental Physics, School of Mathematics and Statistics The University of Sheffield

In collaboration with Carsten van de Bruck and Nelson J. Nunes

28<sup>th</sup> Texas Symposium on Relativistic Astrophysics – Genève





15/12/15

1 / 33

The variation of the fine-structure constant from disformal couplings

# Outline

#### Introduction–Is $\alpha$ a constant of Nature?

#### 2 Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$
- Cosmology
   FRW
- Examples
  - Disformal / Disformal & electromagnetic couplings
  - Disformal & conformal couplings
  - Disformal, conformal & electromagnetic couplings

### 3 Conclusion

15/12/15 2 / 33

#### 2 Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$
- Cosmology
   FRW
- Examples
  - Disformal / Disformal & electromagnetic couplings
  - Disformal & conformal couplings
  - Disformal, conformal & electromagnetic couplings

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- Effective (3+1)-dimensional constants can vary in space and time in higher-dimensional theories.
- Current observations look for variations in the fine-structure constant:
  - Atomic Clocks [T. Rosenband et al '08]

$$\frac{\dot{\alpha}}{\alpha}\Big|_{0} = (-1.6 \pm 2.3) \times 10^{-17} \text{ yr}^{-1},$$

• Oklo natural reactor [E.D. Davis & L. Hamdan '15]

$$rac{\Delta lpha|}{lpha} < 1.1 imes 10^{-8}, \quad z \simeq 0.16,$$

<sup>187</sup>Re meteorites [K.A. Olive et al '04]

 $rac{\Delta lpha}{lpha} = (-8\pm8) imes 10^{-7}, \quad z\simeq 0.43,$ 

15/12/15 4 / 33

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- Effective (3+1)-dimensional constants can vary in space and time in higher-dimensional theories.
- Current observations look for variations in the fine-structure constant:
  - Atomic Clocks [T. Rosenband et al '08]

$$\frac{\dot{\alpha}}{\alpha}\Big|_{0} = (-1.6 \pm 2.3) \times 10^{-17} \text{ yr}^{-1},$$

Oklo natural reactor [E.D. Davis & L. Hamdan '15]

 $rac{\Delta lpha|}{lpha} < 1.1 imes 10^{-8}, \quad z \simeq 0.16,$ 

<sup>187</sup>Re meteorites [K.A. Olive et al '04]

 $rac{\Delta lpha}{lpha} = (-8\pm8) imes 10^{-7}, \quad z\simeq 0.43,$ 

15/12/15 4 / 33

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- Effective (3+1)-dimensional constants can vary in space and time in higher-dimensional theories.
- Current observations look for variations in the fine-structure constant:
  - Atomic Clocks [T. Rosenband et al '08]

$$\left. \frac{\dot{\alpha}}{\alpha} \right|_0 = (-1.6 \pm 2.3) \times 10^{-17} \text{ yr}^{-1},$$

• Oklo natural reactor [E.D. Davis & L. Hamdan '15]

$$rac{|\Delta lpha|}{lpha} < 1.1 imes 10^{-8}, \quad z \simeq 0.16,$$

• <sup>187</sup>Re meteorites [K.A. Olive *et al* '04]

$$rac{\Delta lpha}{lpha} = (-8 \pm 8) imes 10^{-7}, \quad z \simeq 0.43,$$

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- Effective (3+1)-dimensional constants can vary in space and time in higher-dimensional theories.
- Current observations look for variations in the fine-structure constant:
  - The cosmic microwave background (CMB) radiation [Planck Coll. '15]

$$rac{\Delta lpha}{lpha} = (3.6 \pm 3.7) imes 10^{-3}, \quad z \simeq 10^3,$$

- Astrophysical data:
  - Keck/ HIRES-141 absorbers (MM method) [M.T. Murphy et al '04]

$$\left(\frac{\Delta \alpha}{\alpha}\right)_{\rm w} = (-0.57 \pm 0.11) \times 10^{-5}, \quad 0.2 < z < 4.2,$$

• VLT/ UVES-154 absorbers (MM method) [J.A. King *et al* '12]  $\left(\frac{\Delta\alpha}{\alpha}\right)_{\dots} = (0.208 \pm 0.124) \times 10^{-5}, \quad 0.2 < z < 3.7,$ 

15/12/15 4 / 33

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- Effective (3+1)-dimensional constants can vary in space and time in higher-dimensional theories.
- Current observations look for variations in the fine-structure constant:
  - Astrophysical data:
    - Keck/ HIRES Si IV absorption systems (AD method) [M.T. Murphy *et al* '01]

$$\left(\frac{\Delta \alpha}{\alpha}\right)_{\rm w} = (-0.5 \pm 1.3) \times 10^{-5}, \quad 2 < z < 3,$$

• Comparison of HI 21–cm line with molecular rotational absorption spectra [M.T. Murphy *et al* '01]

$$\frac{\Delta \alpha}{\alpha} = (-0.10 \pm 0.22) \times 10^{-5}, \quad z = 0.25,$$

$$rac{\Delta lpha}{lpha} = (-0.08 \pm 0.27) imes 10^{-5}, \quad z = 0.68$$

The variation of the fine-structure constant from disformal couplings

15/12/15 4 / 33

- Dirac came up with the idea on the variation of the fundamental constants of Nature in his 'large numbers hypothesis'.
- Effective (3+1)-dimensional constants can vary in space and time in higher-dimensional theories.
- Current observations look for variations in the fine-structure constant:
  - Astrophysical data:

• Recent data [P. Molaro et al '13, T.M. Evans et al '14]

| Ζ    | $(\Delta lpha / lpha) 	imes 10^{6}$                                               | Spectrograph                                                                                                                                                                                                                                                                                                           |
|------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.08 | $\textbf{4.3}\pm\textbf{3.4}$                                                     | HIRES                                                                                                                                                                                                                                                                                                                  |
| 1.14 | $-7.5\pm5.5$                                                                      | UVES/HIRES/HDS                                                                                                                                                                                                                                                                                                         |
| 1.15 | $-0.1\pm1.8$                                                                      | UVES                                                                                                                                                                                                                                                                                                                   |
| 1.15 | $0.5\pm2.4$                                                                       | HARPS/UVES                                                                                                                                                                                                                                                                                                             |
| 1.34 | $-0.7\pm6.6$                                                                      | UVES/HIRES/HDS                                                                                                                                                                                                                                                                                                         |
| 1.58 | $-1.5\pm2.6$                                                                      | UVES                                                                                                                                                                                                                                                                                                                   |
| 1.66 | $-4.7\pm5.3$                                                                      | HIRES                                                                                                                                                                                                                                                                                                                  |
| 1.69 | $1.3\pm2.6$                                                                       | UVES                                                                                                                                                                                                                                                                                                                   |
| 1.74 | $-7.9\pm6.2$                                                                      | HIRES                                                                                                                                                                                                                                                                                                                  |
| 1.80 | $-6.4\pm7.2$ (                                                                    | UVES/HIRES/HDS                                                                                                                                                                                                                                                                                                         |
|      | z<br>1.08<br>1.14<br>1.15<br>1.15<br>1.34<br>1.58<br>1.66<br>1.69<br>1.74<br>1.80 | $\begin{array}{c cccc} z & (\Delta \alpha / \alpha) \times 10^6 \\ \hline 1.08 & 4.3 \pm 3.4 \\ 1.14 & -7.5 \pm 5.5 \\ 1.15 & -0.1 \pm 1.8 \\ 1.15 & 0.5 \pm 2.4 \\ 1.34 & -0.7 \pm 6.6 \\ 1.58 & -1.5 \pm 2.6 \\ 1.66 & -4.7 \pm 5.3 \\ 1.69 & 1.3 \pm 2.6 \\ 1.74 & -7.9 \pm 6.2 \\ 1.80 & -6.4 \pm 7.2 \end{array}$ |

The variation of the fine-structure constant from disformal couplings

#### Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$
- Cosmology
  - FRW
- Examples
  - Disformal / Disformal & electromagnetic couplings
  - Disformal & conformal couplings
  - Disformal, conformal & electromagnetic couplings

### 3 Conclusion

15/12/15 5 / 33

We consider the following action:

$$S = S_{\text{grav}} \left( g_{\mu\nu}, \phi \right) + S_{\text{matter}} \left( \tilde{g}_{\mu\nu}^{(m)} \right) + S_{\text{EM}} \left( A_{\mu}, \tilde{g}_{\mu\nu}^{(r)} \right)$$
(1)

such that,

$$\tilde{g}_{\mu\nu}^{(m)} = C_m g_{\mu\nu} + D_m \phi_{,\mu} \phi_{,\nu} , \qquad (2)$$

$$\tilde{g}_{,\nu}^{(r)} = C_r g_{,\mu\nu} + D_r \phi_{,\mu} \phi_{,\nu} , \qquad (3)$$

where

 $C_{r,m}$  : conformal factors  $D_{r,m}$  : disformal couplings both taken to be functions of  $\phi$  only

15/12/15 6 / 33

We consider the following action:

$$S = S_{\text{grav}}(g_{\mu\nu}, \phi) + S_{\text{matter}}\left(\tilde{g}_{\mu\nu}^{(m)}\right) + S_{\text{EM}}\left(A_{\mu}, \tilde{g}_{\mu\nu}^{(r)}\right)$$
(1)

such that,

$$\tilde{g}_{\mu\nu}^{(m)} = C_m g_{\mu\nu} + D_m \phi_{,\mu} \phi_{,\nu} , \qquad (2)$$

$$\tilde{g}_{\mu\nu}^{(r)} = C_r g_{\mu\nu} + D_r \phi_{,\mu} \phi_{,\nu} , \qquad (3)$$

where

 $C_{r,m}$  : conformal factors  $D_{r,m}$  : disformal couplings both taken to be functions of  $\phi$  only

15/12/15 6 / 33

We consider the following action:

$$S = S_{\text{grav}}(g_{\mu\nu}, \phi) + S_{\text{matter}}\left(\tilde{g}_{\mu\nu}^{(m)}\right) + S_{\text{EM}}\left(A_{\mu}, \tilde{g}_{\mu\nu}^{(r)}\right)$$
(1)

such that,

$$\tilde{g}_{\mu\nu}^{(m)} = C_m g_{\mu\nu} + D_m \phi_{,\mu} \phi_{,\nu} , \qquad (2)$$

$$\tilde{g}_{\mu\nu}^{(r)} = C_r g_{\mu\nu} + D_r \phi_{,\mu} \phi_{,\nu} ,$$
(3)

where

 $\left.\begin{array}{ll}C_{r,m} & : \text{ conformal factors}\\D_{r,m} & : \text{ disformal couplings}\end{array}\right\} \text{ both taken to be functions of }\phi \text{ only}$ 

15/12/15 6 / 33

The electromagnetic sector is specified by

$$\mathcal{S}_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu},$$
(4)

where

- $F_{\mu
  u}$  is the standard antisymmetric Faraday tensor,
- $\circ j^{\mu}$  is the four-current,
- . The function  $h(\phi)$  is the direct coupling between the electromagnetic field and the scalar.
- We aim to work in the Jordan frame
  - The frame in which matter is decoupled from the scalar degree of freedom.

The electromagnetic sector is specified by

$$\mathcal{S}_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu},$$
(4)

#### where

- $F_{\mu
  u}$  is the standard antisymmetric Faraday tensor,
- $j^{\mu}$  is the four–current,
- The function h(φ) is the direct coupling between the electromagnetic field and the scalar.
- We aim to work in the Jordan frame
  - The frame in which matter is decoupled from the scalar degree of freedom.

The electromagnetic sector is specified by

$$\mathcal{S}_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu},$$
(4)

#### where

- $F_{\mu\nu}$  is the standard antisymmetric Faraday tensor,
- j<sup>µ</sup> is the four–current,
- The function  $h(\phi)$  is the direct coupling between the electromagnetic field and the scalar.
- We aim to work in the Jordan frame
  - The frame in which matter is decoupled from the scalar degree of freedom.

The electromagnetic sector is specified by

$$\mathcal{S}_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu},$$
(4)

where

- $F_{\mu\nu}$  is the standard antisymmetric Faraday tensor,
- $j^{\mu}$  is the four-current,
- The function  $h(\phi)$  is the direct coupling between the electromagnetic field and the scalar.

We aim to work in the Jordan frame

• The frame in which matter is decoupled from the scalar degree of freedom.

The electromagnetic sector is specified by

$$\mathcal{S}_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_\nu A_\mu,$$
(4)

where

- $F_{\mu\nu}$  is the standard antisymmetric Faraday tensor,
- $j^{\mu}$  is the four-current,
- The function  $h(\phi)$  is the direct coupling between the electromagnetic field and the scalar.

#### We aim to work in the Jordan frame

• The frame in which matter is decoupled from the scalar degree of freedom.

The electromagnetic sector is specified by

$$\mathcal{S}_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}^{\mu\nu}_{(r)} \tilde{g}^{\alpha\beta}_{(r)} F_{\mu\alpha} F_{\nu\beta} - \int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_\nu A_\mu,$$
(4)

where

- $F_{\mu\nu}$  is the standard antisymmetric Faraday tensor,
- $j^{\mu}$  is the four-current,
- The function  $h(\phi)$  is the direct coupling between the electromagnetic field and the scalar.
- We aim to work in the Jordan frame
  - The frame in which matter is decoupled from the scalar degree of freedom.

Indeed, we know that

$$\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left( D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} .$$
(5)

Then, in terms of this metric, the electromagnetic sector becomes

$$\begin{split} \mathcal{S}_{\rm EM} &= -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[ \tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{,\alpha} \phi^{,\beta} \right] F_{\mu\alpha} F_{\nu\beta} \\ &- \int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} \ , \end{split}$$

 $\sim$  Gauge invariance:  $abla_{\mu} \, j^{\mu} = 0$ 

Variation with respect to respect to  $A_{\eta}$ 

 $\overline{\nabla}_{\epsilon}(b(\phi)ZT^{\mu}) = \overline{\nabla}_{\epsilon}(b(\phi)Z\gamma^{\mu}\phi^{\mu}(\overline{a}_{\mu\nu}^{\mu}\phi^{\mu} - \overline{a}_{\mu\nu}^{\mu}\phi^{\mu})T_{\mu\mu}) = t^{\mu}(T)$ 

Indeed, we know that

$$\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left( D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} .$$
(5)

Then, in terms of this metric, the electromagnetic sector becomes

$$S_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[ \tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{,\alpha} \phi^{,\beta} \right] F_{\mu\alpha} F_{\nu\beta}$$
$$-\int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} , \qquad (6)$$

• Gauge invariance:  $abla_{\mu} \, j^{\mu} = 0$ 

Variation with respect to respect to  $A_{\mu}$ :

 $\overline{\nabla}_{i}(h(\phi)Z^{p,q}) = \overline{\nabla}_{i}\left(h(\phi)Z^{-q}\phi^{0}\left(\overline{a}_{i}^{m}\phi^{0} - \overline{a}_{i}^{m}\phi^{0}\right)F_{iq}\right) = t^{n-1}$ 

Indeed, we know that

$$\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left( D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} .$$
(5)

Then, in terms of this metric, the electromagnetic sector becomes

$$S_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[ \tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{,\alpha} \phi^{,\beta} \right] F_{\mu\alpha} F_{\nu\beta}$$
$$-\int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} , \qquad (6)$$

where we raise the indices with the metric  $\tilde{g}^{(m)}_{\mu\nu}$  and define

$$Z = \left(1 + \frac{B}{A}\tilde{g}^{\mu\nu}_{(m)}\partial_{\mu}\phi\partial_{\nu}\phi\right)^{1/2},$$
$$\gamma^{2} = \frac{B}{A + B\tilde{g}^{\mu\nu}_{(m)}\partial_{\mu}\phi\partial_{\nu}\phi}.$$

15/12/15 8 / 33

Indeed, we know that

$$\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left( D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} .$$
(5)

Then, in terms of this metric, the electromagnetic sector becomes

$$S_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[ \tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{,\alpha} \phi^{,\beta} \right] F_{\mu\alpha} F_{\nu\beta}$$
$$-\int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} , \qquad (6)$$

• Gauge invariance:  $ilde{
abla}_{\mu} \, j^{\mu} = 0$ 

Variation with respect to respect to A<sub>µ</sub>:

 $\tilde{\nabla}_{\epsilon} \left( h(\phi) Z F^{\epsilon \rho} \right) - \tilde{\nabla}_{\epsilon} \left( h(\phi) Z \gamma^{2} \phi^{\beta} \left( \tilde{g}^{\epsilon \nu}_{(m)} \phi^{\rho} - \tilde{g}^{\rho \nu}_{(m)} \phi^{\epsilon} \right) F_{\nu \beta} \right) = j^{\rho} \quad (7)$ 

where we again raise the indices with  $\tilde{g}_{\mu\nu}^{(\prime\prime\prime)}$ 

Indeed, we know that

$$\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left( D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} .$$
(5)

Then, in terms of this metric, the electromagnetic sector becomes

$$S_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[ \tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{,\alpha} \phi^{,\beta} \right] F_{\mu\alpha} F_{\nu\beta}$$
$$-\int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} , \qquad (6)$$

• Gauge invariance:  $ilde{
abla}_{\mu} \, j^{\mu} = 0$ 

Variation with respect to respect to A<sub>µ</sub>:

 $\tilde{\nabla}_{\epsilon} \left( h(\phi) Z F^{\epsilon \rho} \right) - \tilde{\nabla}_{\epsilon} \left( h(\phi) Z \gamma^{2} \phi^{\beta} \left( \tilde{g}^{\epsilon \nu}_{(m)} \phi^{\rho} - \tilde{g}^{\rho \nu}_{(m)} \phi^{\epsilon} \right) F_{\nu \beta} \right) = j^{\rho} \quad (7)$ 

where we again raise the indices with  $\tilde{g}_{\mu\nu}^{(\prime\prime)}$ 

Indeed, we know that

$$\tilde{g}_{\mu\nu}^{(r)} = \frac{C_r}{C_m} \tilde{g}_{\mu\nu}^{(m)} + \left( D_r - \frac{C_r D_m}{C_m} \right) \phi_{,\mu} \phi_{,\nu} \equiv A \tilde{g}_{\mu\nu}^{(m)} + B \phi_{,\mu} \phi_{,\nu} .$$
(5)

Then, in terms of this metric, the electromagnetic sector becomes

$$S_{\rm EM} = -\frac{1}{4} \int d^4 x \sqrt{-\tilde{g}^{(m)}} h(\phi) Z \left[ \tilde{g}^{\mu\nu}_{(m)} \tilde{g}^{\alpha\beta}_{(m)} - 2\gamma^2 \tilde{g}^{\mu\nu}_{(m)} \phi^{,\alpha} \phi^{,\beta} \right] F_{\mu\alpha} F_{\nu\beta}$$
$$-\int d^4 x \sqrt{-\tilde{g}^{(m)}} \tilde{g}^{\mu\nu}_{(m)} j_{\nu} A_{\mu} , \qquad (6)$$

- Gauge invariance:  $ilde{
  abla}_{\mu}\,j^{\mu}=0$
- Variation with respect to respect to  $A_{\mu}$ :

$$\tilde{\nabla}_{\epsilon} \left( h(\phi) Z F^{\epsilon \rho} \right) - \tilde{\nabla}_{\epsilon} \left( h(\phi) Z \gamma^{2} \phi^{,\beta} \left( \tilde{g}^{\epsilon \nu}_{(m)} \phi^{,\rho} - \tilde{g}^{\rho \nu}_{(m)} \phi^{,\epsilon} \right) F_{\nu \beta} \right) = j^{\rho} \quad (7)$$

where we again raise the indices with  $\tilde{g}_{\mu\nu}^{(m)}$ .

J. Mifsud

#### 2 Disformal Electrodynamics

The Model

#### • Identification of $\alpha$

- Evolution of  $\alpha$
- Cosmology
  - FRW
- Examples
  - Disformal / Disformal & electromagnetic couplings
  - Disformal & conformal couplings
  - Disformal, conformal & electromagnetic couplings

### 3 Conclusion

15/12/15 9 / 33

# Disformal Electrodynamics: Identification of $\alpha$

- Set  $\tilde{g}^{(m)}_{\mu\nu} = \eta_{\mu\nu}$  and consider  $\phi$  to depend on time only.
- From the field equation (7), and identifying the electric field by  $E^i = F^{i0}$ , we find the field equation for the electric field to be given by

$$\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)} \tag{8}$$

where  $\rho = j^0$  is the charge density.

• By integrating this equation over a volume V, it is straightforward to derive the electrostatic potential

$$V(r) = \frac{ZQ}{4\pi h(\phi)r} \tag{9}$$

where Q is the total charge contained in  $\mathcal{V}$ .

 Comparing this to the standard expression for the tree-level-potential from QED, one finds that α has the following dependence on Z and h:

- Set  $\tilde{g}^{(m)}_{\mu\nu} = \eta_{\mu\nu}$  and consider  $\phi$  to depend on time only.
- From the field equation (7), and identifying the electric field by  $E^i = F^{i0}$ , we find the field equation for the electric field to be given by

$$\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)} \tag{8}$$

where  $\rho = j^0$  is the charge density.

• By integrating this equation over a volume V, it is straightforward to derive the electrostatic potential

$$V(r) = \frac{ZQ}{4\pi h(\phi)r} \tag{9}$$

where Q is the total charge contained in  $\mathcal{V}$ .

 Comparing this to the standard expression for the tree-level-potential from QED, one finds that α has the following dependence on Z and h:



- Set  $\tilde{g}^{(m)}_{\mu\nu} = \eta_{\mu\nu}$  and consider  $\phi$  to depend on time only.
- From the field equation (7), and identifying the electric field by  $E_{i}^{i} = E_{i}^{i0}$  we find the field equation for the electric field to be given
  - $E^{i} = F^{i0}$ , we find the field equation for the electric field to be given by

$$\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)} \tag{8}$$

where  $\rho = j^0$  is the charge density.

J. Mifsud

• By integrating this equation over a volume V, it is straightforward to derive the electrostatic potential

$$V(r) = \frac{ZQ}{4\pi h(\phi)r} \tag{9}$$

15/12/15

10 / 33

where Q is the total charge contained in  $\mathcal{V}$ .

 Comparing this to the standard expression for the tree-level-potential from QED, one finds that α has the following dependence on Z and h

The variation of the fine-structure constant from disformal couplings

- Set  $\tilde{g}_{\mu\nu}^{(m)} = \eta_{\mu\nu}$  and consider  $\phi$  to depend on time only.
- From the field equation (7), and identifying the electric field by  $E^i = F^{i0}$ , we find the field equation for the electric field to be given by

$$\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)} \tag{8}$$

where  $\rho = j^0$  is the charge density.

• By integrating this equation over a volume  $\mathcal{V}$ , it is straightforward to derive the electrostatic potential

$$V(r) = \frac{ZQ}{4\pi h(\phi)r} \tag{9}$$

15/12/15

10 / 33

where Q is the total charge contained in  $\mathcal{V}$ .

 Comparing this to the standard expression for the tree-level-potential from QED, one finds that α has the following dependence on Z and h:



- Set  $\tilde{g}^{(m)}_{\mu\nu} = \eta_{\mu\nu}$  and consider  $\phi$  to depend on time only.
- From the field equation (7), and identifying the electric field by  $E^i = F^{i0}$ , we find the field equation for the electric field to be given by

$$\nabla \cdot \mathbf{E} = \frac{Z\rho}{h(\phi)} \tag{8}$$

where  $\rho = j^0$  is the charge density.

• By integrating this equation over a volume  $\mathcal{V}$ , it is straightforward to derive the electrostatic potential

$$V(r) = \frac{ZQ}{4\pi h(\phi)r} \tag{9}$$

where Q is the total charge contained in  $\mathcal{V}$ .

 Comparing this to the standard expression for the tree-level-potential from QED, one finds that α has the following dependence on Z and h:

$$\boxed{\alpha \propto \frac{Z}{h(\phi)}} \text{ (Note that } \alpha \propto h^{-1}(\phi) \text{ when } \tilde{g}_{\mu\nu}^{(m)} \equiv \tilde{g}_{\mu\nu}^{(r)} \text{.)} \tag{10}$$

#### Disformal Electrodynamics

- The Model
- $\bullet$  Identification of  $\alpha$
- $\bullet$  Evolution of  $\alpha$
- Cosmology
  - FRW
- Examples
  - Disformal / Disformal & electromagnetic couplings
  - Disformal & conformal couplings
  - Disformal, conformal & electromagnetic couplings

### 3 Conclusion

15/12/15 11 / 33

# Disformal Electrodynamics: Evolution of $\boldsymbol{\alpha}$

Using

$$\alpha \propto \frac{Z}{h(\phi)}, \quad Z = \left(1 + \frac{B}{A}\tilde{g}^{\mu\nu}_{(m)}\partial_{\mu}\phi\partial_{\nu}\phi\right)^{1/2}$$
 (11)

 $\bullet$  We define the redshift evolution of  $\alpha$  by the quantity

$$\frac{\Delta\alpha}{\alpha}(z) \equiv \frac{\alpha(z) - \alpha(z=0)}{\alpha(z=0)} = \frac{h(\phi_0)Z(z)}{h(\phi(z))Z_0} - 1,$$
(12)

where  $\phi_0$  is the field value today and  $Z_0$  is the value of Z evaluated today.

• In a spatially–flat FRW gravitational metric, the temporal variation of  $\alpha$  reduces to the following

$$\frac{\dot{\alpha}}{\alpha} = \frac{1}{Z} \left( \frac{\partial Z}{\partial \phi} \dot{\phi} + \frac{\partial Z}{\partial \dot{\phi}} \ddot{\phi} \right) - \frac{1}{h} \frac{dh}{d\phi} \dot{\phi}.$$
(13)

# Disformal Electrodynamics: Evolution of $\boldsymbol{\alpha}$

Using

$$\alpha \propto \frac{Z}{h(\phi)}, \quad Z = \left(1 + \frac{B}{A}\tilde{g}^{\mu\nu}_{(m)}\partial_{\mu}\phi\partial_{\nu}\phi\right)^{1/2}$$
 (11)

 $\bullet$  We define the redshift evolution of  $\alpha$  by the quantity

$$\frac{\Delta\alpha}{\alpha}(z) \equiv \frac{\alpha(z) - \alpha(z=0)}{\alpha(z=0)} = \frac{h(\phi_0)Z(z)}{h(\phi(z))Z_0} - 1,$$
(12)

where  $\phi_0$  is the field value today and  $Z_0$  is the value of Z evaluated today.

• In a spatially–flat FRW gravitational metric, the temporal variation of  $\alpha$  reduces to the following

$$\frac{\dot{\alpha}}{\alpha} = \frac{1}{Z} \left( \frac{\partial Z}{\partial \phi} \dot{\phi} + \frac{\partial Z}{\partial \dot{\phi}} \ddot{\phi} \right) - \frac{1}{h} \frac{dh}{d\phi} \dot{\phi}.$$
(13)

#### Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$

#### Cosmology

- FRW
- Examples
  - Disformal / Disformal & electromagnetic couplings
  - Disformal & conformal couplings
  - Disformal, conformal & electromagnetic couplings

### 3 Conclusion

15/12/15 13 / 33

We now specify our gravitational-scalar action, which leads us to the EF theory described by the following action

$$S = \int d^{4}x \sqrt{-g} \left( \frac{1}{2}R - \frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - V(\phi) \right) + S_{\text{matter}} \left( \tilde{g}_{\mu\nu}^{(m)} \right) - \frac{1}{4} \int d^{4}x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}_{(r)}^{\mu\nu} \tilde{g}_{(r)}^{\alpha\beta} F_{\mu\alpha} F_{\nu\beta} , \qquad (14)$$

where the last term in the action above describes the dynamics of the CMB photons.

Field equations

$$G^{\mu\nu} = T^{\mu\nu}_{\phi} + T^{\mu\nu}_{(m)} + T^{\mu\nu}_{(r)}, \tag{15}$$

We now specify our gravitational-scalar action, which leads us to the EF theory described by the following action

$$S = \int d^{4}x \sqrt{-g} \left( \frac{1}{2}R - \frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - V(\phi) \right) + S_{\text{matter}} \left( \tilde{g}_{\mu\nu}^{(m)} \right) - \frac{1}{4} \int d^{4}x \sqrt{-\tilde{g}^{(r)}} h(\phi) \tilde{g}_{(r)}^{\mu\nu} \tilde{g}_{(r)}^{\alpha\beta} F_{\mu\alpha} F_{\nu\beta} , \qquad (14)$$

where the last term in the action above describes the dynamics of the CMB photons.

• Field equations

$$G^{\mu\nu} = T^{\mu\nu}_{\phi} + T^{\mu\nu}_{(m)} + T^{\mu\nu}_{(r)}, \qquad (15)$$

• Klein-Gordon equation

$$\Box \phi - V' = -Q_m - Q_r, \tag{16}$$

Conservation equations

$$\nabla_{\mu} T^{\mu}_{(m)\nu} = Q_m \phi_{,\nu} , \quad \nabla_{\mu} T^{\mu}_{(r)\nu} = Q_r \phi_{,\nu} , \qquad (17)$$

where,

$$Q_{m} = \frac{C'_{m}}{2C_{m}}T_{(m)} + \frac{D'_{m}}{2C_{m}}\phi_{,\mu}\phi_{,\nu}T^{\mu\nu}_{(m)} - \nabla_{\mu}\left[\frac{D_{m}}{C_{m}}\phi_{,\nu}T^{\mu\nu}_{(m)}\right], \quad (18)$$

$$Q_{r} = \frac{C'_{r}}{2C_{r}}T_{(r)} + \frac{D'_{r}}{2C_{r}}\phi_{,\mu}\phi_{,\nu}T^{\mu\nu}_{(r)} + \frac{h'}{h}C^{2}_{r}\sqrt{1 + \frac{D_{r}}{C_{r}}g^{\mu\nu}\phi_{,\mu}\phi_{,\nu}}\tilde{\mathcal{L}}_{EM}$$

$$-\nabla_{\mu}\left[\frac{D_{r}}{C_{r}}\phi_{,\nu}T^{\mu\nu}_{(r)}\right]. \quad (18)$$

• Klein-Gordon equation

$$\Box \phi - V' = -Q_m - Q_r, \tag{16}$$

Conservation equations

$$\nabla_{\mu} T^{\mu}_{(m)\nu} = Q_m \phi_{,\nu} , \quad \nabla_{\mu} T^{\mu}_{(r)\nu} = Q_r \phi_{,\nu} , \qquad (17)$$

where,

$$Q_{m} = \frac{C'_{m}}{2C_{m}}T_{(m)} + \frac{D'_{m}}{2C_{m}}\phi_{,\mu}\phi_{,\nu}T_{(m)}^{\mu\nu} - \nabla_{\mu}\left[\frac{D_{m}}{C_{m}}\phi_{,\nu}T_{(m)}^{\mu\nu}\right], \quad (18)$$

$$Q_{r} = \frac{C'_{r}}{2C_{r}}T_{(r)} + \frac{D'_{r}}{2C_{r}}\phi_{,\mu}\phi_{,\nu}T_{(r)}^{\mu\nu} + \frac{h'}{h}C_{r}^{2}\sqrt{1 + \frac{D_{r}}{C_{r}}g^{\mu\nu}\phi_{,\mu}\phi_{,\nu}}\tilde{\mathcal{L}}_{EM}$$

$$-\nabla_{\mu}\left[\frac{D_{r}}{C_{r}}\phi_{,\nu}T_{(r)}^{\mu\nu}\right]. \quad (19)$$

The variation of the fine-structure constant from disformal couplings

#### 2 Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$
- Cosmology
   FRW
- Examples
  - Disformal / Disformal & electromagnetic couplings
  - Disformal & conformal couplings
  - Disformal, conformal & electromagnetic couplings

We shall now consider perfect fluid energy-momentum tensors for radiation and matter in the EF, radiation in the RF and matter in the JF as follows

$$T_{(r)}^{\mu\nu} = (\rho_r + p_r)u^{\mu}u^{\nu} + p_r g^{\mu\nu}, \quad T_{(m)}^{\mu\nu} = (\rho_m + p_m)u^{\mu}u^{\nu} + p_m g^{\mu\nu}, \quad (20)$$
  
$$\tilde{T}_{(r)}^{\mu\nu} = (\tilde{\rho}_r + \tilde{p}_r)\tilde{u}^{\mu}\tilde{u}^{\nu} + \tilde{p}_r\tilde{g}_{(r)}^{\mu\nu}, \quad \tilde{T}_{(m)}^{\mu\nu} = (\tilde{\rho}_m + \tilde{p}_m)\tilde{u}^{\mu}\tilde{u}^{\nu} + \tilde{p}_m\tilde{g}_{(m)}^{\mu\nu}, \quad (21)$$

Furthermore, we will now consider a zero curvature FRW EF metric,  $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$ , leading to

$$\ddot{\phi} + 3H\dot{\phi} + V' = Q_m + Q_r, \qquad (22)$$

$$\dot{\rho}_m + 3H(\rho_m + p_m) = -Q_m \dot{\phi}, \qquad (23)$$

$$\dot{\rho}_r + 3H(\rho_r + p_r) = -Q_r \dot{\phi}, \qquad (24)$$

15/12/15

17 / 33

where  $H = \dot{a}/a$  is the Hubble parameter and dot represents an EF time derivative. We introduce  $\eta \equiv \tilde{\mathcal{L}}_{EM}/\tilde{\rho}_r$  in what follows.

J. Mifsud

The variation of the fine-structure constant from disformal couplings

We shall now consider perfect fluid energy-momentum tensors for radiation and matter in the EF, radiation in the RF and matter in the JF as follows

$$T_{(r)}^{\mu\nu} = (\rho_r + p_r)u^{\mu}u^{\nu} + p_r g^{\mu\nu}, \quad T_{(m)}^{\mu\nu} = (\rho_m + p_m)u^{\mu}u^{\nu} + p_m g^{\mu\nu}, \quad (20)$$
  
$$\tilde{T}_{(r)}^{\mu\nu} = (\tilde{\rho}_r + \tilde{p}_r)\tilde{u}^{\mu}\tilde{u}^{\nu} + \tilde{p}_r\tilde{g}_{(r)}^{\mu\nu}, \quad \tilde{T}_{(m)}^{\mu\nu} = (\tilde{\rho}_m + \tilde{p}_m)\tilde{u}^{\mu}\tilde{u}^{\nu} + \tilde{p}_m\tilde{g}_{(m)}^{\mu\nu}, \quad (21)$$

Furthermore, we will now consider a zero curvature FRW EF metric,  $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$ , leading to

$$\ddot{\phi} + 3H\dot{\phi} + V' = Q_m + Q_r, \qquad (22)$$

$$\dot{\rho}_m + 3H(\rho_m + p_m) = -Q_m \dot{\phi}, \qquad (23)$$

$$\dot{\rho}_r + 3H(\rho_r + p_r) = -Q_r \dot{\phi}, \qquad (24)$$

15/12/15

17 / 33

where  $H = \dot{a}/a$  is the Hubble parameter and dot represents an EF time derivative. We introduce  $\eta \equiv \tilde{\mathcal{L}}_{EM}/\tilde{\rho}_r$  in what follows.

J. Mifsud

The variation of the fine-structure constant from disformal couplings

$$Q_m = \frac{A_r}{A_r A_m - D_r D_m \rho_r \rho_m} \left[ B_m - \frac{D_m B_r}{A_r} \rho_m \right], \qquad (25)$$
$$Q_r = \frac{A_m}{A_r A_m - D_r D_m \rho_r \rho_m} \left[ B_r - \frac{D_r B_m}{A_m} \rho_r \right], \qquad (26)$$

where

$$A_r = C_r + D_r \left(\rho_r - \dot{\phi}^2\right) , \quad A_m = C_m + D_m \left(\rho_m - \dot{\phi}^2\right) , \qquad (27)$$

$$B_{r} = \frac{1}{2}C_{r}'(3w_{r}-1)\rho_{r} - \frac{1}{2}D_{r}'\dot{\phi}^{2}\rho_{r} + \frac{h'}{h}\left(C_{r}-D_{r}\dot{\phi}^{2}\right)\eta\rho_{r} + D_{r}\rho_{r}\left[\frac{C_{r}'}{C_{r}}\dot{\phi}^{2} + V' + 3H\dot{\phi}\left(1+w_{r}\right)\right],$$
(28)

$$B_{m} = \frac{1}{2} C'_{m} (3w_{m} - 1) \rho_{m} - \frac{1}{2} D'_{m} \dot{\phi}^{2} \rho_{m} + D_{m} \rho_{m} \left[ \frac{C'_{m}}{C_{m}} \dot{\phi}^{2} + V' + 3H \dot{\phi} (1 + w_{m}) \right]$$

J. Mifsud

The variation of the fine-structure constant from disformal couplings

≣া ≣া পিও 5/12/15 18/33

(日) (同) (三) (三)

$$Q_m = \frac{A_r}{A_r A_m - D_r D_m \rho_r \rho_m} \left[ B_m - \frac{D_m B_r}{A_r} \rho_m \right], \qquad (25)$$
$$Q_r = \frac{A_m}{A_r A_m - D_r D_m \rho_r \rho_m} \left[ B_r - \frac{D_r B_m}{A_m} \rho_r \right], \qquad (26)$$

where

$$A_r = C_r + D_r \left(\rho_r - \dot{\phi}^2\right) , \quad A_m = C_m + D_m \left(\rho_m - \dot{\phi}^2\right) , \qquad (27)$$

$$B_{r} = \frac{1}{2}C_{r}'(3w_{r}-1)\rho_{r} - \frac{1}{2}D_{r}'\dot{\phi}^{2}\rho_{r} + \frac{h'}{h}\left(C_{r} - D_{r}\dot{\phi}^{2}\right)\eta\rho_{r} + D_{r}\rho_{r}\left[\frac{C_{r}'}{C_{r}}\dot{\phi}^{2} + V' + 3H\dot{\phi}(1+w_{r})\right], B_{m} = \frac{1}{2}C_{m}'(3w_{m}-1)\rho_{m} - \frac{1}{2}D_{m}'\dot{\phi}^{2}\rho_{m} + D_{m}\rho_{m}\left[\frac{C_{m}'}{C_{m}}\dot{\phi}^{2} + V' + 3H\dot{\phi}(1+w_{m})\right]$$
(28)

5/12/15 18 / 33

$$H^{2} = \frac{1}{3} \left( \rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[ 3 \left( \rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left( 4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]$$
(29)

- The scalar field characterizing the disformal couplings is also responsible for the current acceleration of the Universe, i.e., it is the dark energy.
- Non-interacting dark sector (Type la supernova)

$$\dot{\rho}_{\mathsf{DE}}^{\mathsf{eff}} = -3H(1 + w_{\mathsf{eff}})\rho_{\mathsf{DE}}^{\mathsf{eff}}, \ H^2 = \frac{1}{3}\left(a^{-4}\rho_{0,r} + a^{-3}\rho_{0,m} + \rho_{\mathsf{DE}}^{\mathsf{eff}}\right)$$

$$H^{2} = \frac{1}{3} \left( \rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[ 3 \left( \rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left( 4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]$$
(29)

- The scalar field characterizing the disformal couplings is also responsible for the current acceleration of the Universe, i.e., it is the dark energy.
- Non–interacting dark sector (Type Ia supernova)

$$\dot{\rho}_{\text{DE}}^{\text{eff}} = -3H(1+w_{\text{eff}})\rho_{\text{DE}}^{\text{eff}}, \ H^2 = \frac{1}{3}\left(a^{-4}\rho_{0,r} + a^{-3}\rho_{0,m} + \rho_{\text{DE}}^{\text{eff}}\right)$$

$$v_{\rm eff} = \frac{\rho_{\phi} + \rho_r \left(w_r - \frac{1}{3}a^{-4\frac{\rho_{0,r}}{\rho_r}}\right)}{\rho_m + \rho_r + \rho_{\phi} - a^{-4}\rho_{0,r} - a^{-3}\rho_{0,m}}$$

$$H^{2} = \frac{1}{3} \left( \rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[ 3 \left( \rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left( 4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]$$
(29)

- The scalar field characterizing the disformal couplings is also responsible for the current acceleration of the Universe, i.e., it is the dark energy.
- Non-interacting dark sector (Type Ia supernova)

$$\dot{\rho}_{\mathsf{DE}}^{\mathsf{eff}} = -3H(1 + w_{\mathsf{eff}})\rho_{\mathsf{DE}}^{\mathsf{eff}}, \ H^2 = \frac{1}{3}\left(a^{-4}\rho_{0,r} + a^{-3}\rho_{0,m} + \rho_{\mathsf{DE}}^{\mathsf{eff}}\right)$$
$$w_{\mathsf{eff}} = \frac{\rho_{\phi} + \rho_r \left(w_r - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_r}\right)}{\rho_m + \rho_r + \rho_{\phi} - a^{-4}\rho_{0,r} - a^{-3}\rho_{0,m}}$$

$$H^{2} = \frac{1}{3} \left( \rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[ 3 \left( \rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left( 4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]$$
(29)

- The scalar field characterizing the disformal couplings is also responsible for the current acceleration of the Universe, i.e., it is the dark energy.
- Non-interacting dark sector (Type Ia supernova)

$$\dot{\rho}_{\mathsf{DE}}^{\mathsf{eff}} = -3H(1+w_{\mathsf{eff}})\rho_{\mathsf{DE}}^{\mathsf{eff}}, \ H^2 = \frac{1}{3}\left(a^{-4}\rho_{0,r} + a^{-3}\rho_{0,m} + \rho_{\mathsf{DE}}^{\mathsf{eff}}\right)$$
$$w_{\mathsf{eff}} = \frac{p_{\phi} + \rho_r\left(w_r - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_r}\right)}{\rho_m + \rho_r + \rho_{\phi} - a^{-4}\rho_{0,r} - a^{-3}\rho_{0,m}} = \frac{\rho_{\phi} + \rho_r\left(w_r - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_r}\right)}{\rho_{\mathsf{DE}}^{\mathsf{eff}}}$$
(30)

$$H^{2} = \frac{1}{3} \left( \rho_{m} + \rho_{r} + \rho_{\phi} \right), \ \dot{H} = -\frac{1}{6} \left[ 3 \left( \rho_{m} + \dot{\phi}^{2} \right) + \rho_{r} \left( 4 - \frac{D_{r}}{C_{r}} \dot{\phi}^{2} \right) \right]$$
(29)

- The scalar field characterizing the disformal couplings is also responsible for the current acceleration of the Universe, i.e., it is the dark energy.
- Non-interacting dark sector (Type Ia supernova)

$$\underbrace{\dot{\rho}_{\mathsf{DE}}^{\mathsf{eff}} = -3H(1 + w_{\mathsf{eff}})\rho_{\mathsf{DE}}^{\mathsf{eff}}, \ H^{2} = \frac{1}{3} \left( a^{-4}\rho_{0,r} + a^{-3}\rho_{0,m} + \rho_{\mathsf{DE}}^{\mathsf{eff}} \right)}{\rho_{m} + \rho_{r} \left( w_{r} - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_{r}} \right)} = \frac{p_{\phi} + \rho_{r} \left( w_{r} - \frac{1}{3}a^{-4}\frac{\rho_{0,r}}{\rho_{r}} \right)}{\rho_{\mathsf{DE}}^{\mathsf{eff}}}$$
(30)

#### Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$
- Cosmology
  - FRW

#### Examples

- Disformal / Disformal & electromagnetic couplings
- Disformal & conformal couplings
- Disformal, conformal & electromagnetic couplings

• We specify the following form of couplings and potential:

$$egin{aligned} C_i(\phi) &= eta_i e^{x_i \phi} \quad, \quad D_i(\phi) &= M_i^{-4} e^{y_i \phi}, \ V(\phi) &= M_V^4 e^{-\lambda \phi}, \quad h(\phi) &= 1 - \zeta(\phi - \phi_0), \end{aligned}$$

such that the introduced parameters are tuned in order to be in agreement with the observational data on the variation of  $\alpha$  together with the cosmological parameters.

15/12/15 21 / 33

• We specify the following form of couplings and potential:

$$egin{aligned} C_i(\phi) &= eta_i e^{x_i \phi} \quad, \quad D_i(\phi) &= M_i^{-4} e^{y_i \phi}, \ V(\phi) &= M_V^4 e^{-\lambda \phi}, \quad h(\phi) &= 1 - \zeta(\phi - \phi_0), \end{aligned}$$

such that the introduced parameters are tuned in order to be in agreement with the observational data on the variation of  $\alpha$  together with the cosmological parameters.

| Parameter      | Estimated value                           |  |  |
|----------------|-------------------------------------------|--|--|
| $W_{0,\phi}$   | $-1.006\pm0.045$                          |  |  |
| $H_0$          | $(67.8\pm0.9)~\mathrm{km~s^{-1}Mpc^{-1}}$ |  |  |
| $\Omega_{0,m}$ | $0.308\pm0.012$                           |  |  |

15/12/15 21 / 33

• We specify the following form of couplings and potential:

$$\begin{split} C_i(\phi) &= \beta_i e^{x_i \phi} \quad , \quad D_i(\phi) = M_i^{-4} e^{y_i \phi}, \\ V(\phi) &= M_V^4 e^{-\lambda \phi}, \quad h(\phi) = 1 - \zeta(\phi - \phi_0), \end{split}$$

such that the introduced parameters are tuned in order to be in agreement with the observational data on the variation of  $\alpha$  together with the cosmological parameters.

| Ex  | $M_r \neq M_m$  | M <sub>m</sub>  | $\beta_{m}$ | x <sub>m</sub> | $ \zeta $                             | $M_V$         | λ     |
|-----|-----------------|-----------------|-------------|----------------|---------------------------------------|---------------|-------|
| *   | $\sim$ meV      | $\sim { m meV}$ | 1           | 0              | $< 5 	imes 10^{-6}$                   | 2.69 meV      | 0.45  |
| **  | $\sim { m meV}$ | 15 meV          | 8           | 0.14           | 0                                     | 2.55 meV      | 0.45  |
| *** | $\sim$ meV      | 15 meV          | 8           | 0.14           | $< 5 	imes 10^{-6}$                   | 2.55 meV      | 0.45  |
|     |                 |                 |             |                | < < > < < < < < < < < < < < < < < < < | ▶ ★ 善 ▶ ★ ● ▶ | 三 の ٩ |

15/12/15

33

• We specify the following form of couplings and potential:

$$\begin{aligned} C_i(\phi) &= \beta_i e^{x_i \phi} , \quad D_i(\phi) = M_i^{-4} e^{y_i \phi}, \\ V(\phi) &= M_V^4 e^{-\lambda \phi}, \quad h(\phi) = 1 - \zeta(\phi - \phi_0), \end{aligned}$$

such that the introduced parameters are tuned in order to be in agreement with the observational data on the variation of  $\alpha$  together with the cosmological parameters.

| Ex  | $(\dot{lpha}/lpha) _{0}	imes 10^{17}$ | $\left \Delta lpha / lpha  ight _{z_{\mathrm{CMB}}}$ |
|-----|---------------------------------------|------------------------------------------------------|
| *   | $-2.14\sim-1.62$                      | $10^{-8} \sim 10^{-6}$                               |
| **  | $-2.41 \sim 0.70$                     | $10^{-8} \sim 10^{-7}$                               |
| *** | $-2.10\sim-1.24$                      | $10^{-7} \sim 10^{-6}$                               |

#### 2 Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$
- Cosmology
   FRW

#### Examples

#### • Disformal / Disformal & electromagnetic couplings

- Disformal & conformal couplings
- Disformal, conformal & electromagnetic couplings

# \*Disformal / Disformal & electromagnetic couplings



The variation of the fine-structure constant from disformal couplings

/12/15 25 / 33

# \*Disformal / Disformal & electromagnetic couplings



J. Mifsud

The variation of the fine-structure constant from disformal couplings

/12/15 26 / 33

#### 2 Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$
- Cosmology
   FRW

#### Examples

- Disformal / Disformal & electromagnetic couplings
- Disformal & conformal couplings
- Disformal, conformal & electromagnetic couplings

# \*\*Disformal & conformal couplings



The variation of the fine-structure constant from disformal couplings

/12/15 28 / 33

#### 2 Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$
- Cosmology
   FRW

#### Examples

- Disformal / Disformal & electromagnetic couplings
- Disformal & conformal couplings
- Disformal, conformal & electromagnetic couplings

# \*\*\*Disformal, conformal & electromagnetic couplings



The variation of the fine-structure constant from disformal couplings

15/12/15 30 / 33

#### 2 Disformal Electrodynamics

- The Model
- Identification of  $\alpha$
- Evolution of  $\alpha$
- Cosmology
   FRW
- Examples
  - Disformal / Disformal & electromagnetic couplings
  - Disformal & conformal couplings
  - Disformal, conformal & electromagnetic couplings

- A variation in the fine-structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as  $10^{-21}$  yr<sup>-1</sup>.
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
  - PEPSI at the LBT
  - ESPRESSO at the VLT
  - ELT-Hires at the E-ELT

- A variation in the fine-structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as  $10^{-21}$  yr<sup>-1</sup>.
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
  - PEPSI at the LBT
  - ESPRESSO at the VLT
  - ELT-Hires at the E-ELT

- A variation in the fine-structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as  $10^{-21}$  yr<sup>-1</sup>.
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
  - PEPSI at the LBT
  - ELT-Hires at the ELELT

- A variation in the fine-structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as  $10^{-21}$  yr<sup>-1</sup>.
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
  - PEPSI at the LBT
  - ESPRESSO at the VLT
  - ELT-Hires at the E-ELT

- A variation in the fine-structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as  $10^{-21}$  yr<sup>-1</sup>.
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
  - PEPSI at the LBT
  - ESPRESSO at the VLT
  - ELT-Hires at the E-ELT



- A variation in the fine-structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as  $10^{-21}$  yr<sup>-1</sup>.
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
  - PEPSI at the LBT
  - ESPRESSO at the VLT
  - ELT-Hires at the E-ELT



15/12/15 32 / 33

- A variation in the fine-structure constant can be induced by disformal couplings provided that the radiation and matter disformal coupling strengths are not identical.
- Such a variation is enhanced in the presence of the usual electromagnetic coupling.
- Laboratory measurements with molecular and nuclear clocks are expected to increase their sensitivity to as high as  $10^{-21}$  yr<sup>-1</sup>.
- Better constrained data is expected from high-resolution ultra-stable spectrographs such as
  - PEPSI at the LBT
  - ESPRESSO at the VLT
  - ELT-Hires at the E-ELT



# Thank You

The variation of the fine-structure constant from disformal couplings

15/12/15 33 / 33