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Spinning BH binaries

The Spin of Supermassive Black Holes 12
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Figure 6. Masses M and spin parameters a of the 19 SMBHs for which both
parameters are constrained. Following the conventions of the primary literature, the
spin measurements are shown with 90% error ranges, whereas the masses are shown
with 1σ. This is an updated version of a similar figure appearing in [55].

In Fig. 6 we take the 19 of these objects that also have mass estimates (from various

techniques; see [55]) and place them on the (M, a)-plane. There are several interesting

points to note about this plot. Firstly, there is clearly a population of rapidly spinning

BHs (a > 0.9), especially below masses of 4 × 107M⊙. This is a strong indication that

these SMBHs grew (at least in their final mass doubling) by the accretion of gas with a

coherent angular momentum. Secondly, there are some SMBHs for which intermediate
spins (0.4 < a < 0.8) are inferred, and these tend to be the highest mass systems

(M > 4 × 107M⊙). While the small number statistics and ill-defined selection effects

prevent firm conclusions from being drawn, this may be the first hints for a mass-

dependence to the SMBH spin distribution, with a more slowly spinning population

(corresponding to growth via BH-BH mergers or incoherent accretion [56]) emerging

at the highest masses. Lastly, there are no retrograde spins measured even though
our technique is capable of finding them. A single epoch analysis of the BLRG 3C120

suggested an accretion disk truncated at r ∼ 10M , possibly indicating a rapid retrograde

spin [57], but a multi-epoch analysis revealed that this was a rapidly-rotating prograde

BH with a disk that undergoes transitory truncation related to jet activity [51].

3.7. The emerging field of broad iron line reverberation

An important characteristic of accretion onto BHs that we have not yet addressed is

the time-variability. Fundamentally, the variability is driven by a combination of local

instabilities (such as the magnetorotational instability that drives MHD turbulence [21])

Spin measurements

Reynolds 2013 

4/30/2014 Compact Supermassive Binary Black Hole System, figures
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Naturally weighted 2005 VLBA images of 0402+379 at 8, 15, 22 and 43 GHz. Contours are drawn

beginning at 3  and increase by factors of 2 thereafter. The peak flux density and rms noise for each

frequency are given in Table 1. The labels shown in the 5 GHz map indicate the positions of the two strong,

compact, central components derived from model fitting.Most convincing  
BH-binary candidate

Rodriguez et al. 2006

Radio galaxy 
0402+379:  
two cores  

7.3 pc apart
Casares 2007

BW Cir
GX 339-4

J1859+226
J1650-500

CYG X-1
LMC X-1
LMC X-3

J1118+480
J0422+320
GRS1009-45
A0620-00
GS2000+25
GS1124-684
H1705-25
4U1543-47
J1550-564
J1655-40
J1819-254
V404 CYG

GRS1915+105

Stellar-mass BHs

Haring and Rix 2004

Supermassive BHs
Mass measurements



Can astrophysics align the spins?

Astrophysical and relativistic inspiral

aGW = 1.2⇥ 1011
✓

tGW

1.4⇥ 1010yr

◆1/4 ✓ M

M�

◆3/4

cm

Gravitational waves are efficient below 
⇠ 10R�
⇠ 0.01 pc

stellar-mass BHs 
supermassive BHs 

Bardeen & Petterson 1975; King et al 2005 
Bogdanovic et al 2007; Lodato and DG 2012, 
Miller and Krolik 2013, DG et al 2015b

Kalogera 2000, Belczynski et al 2008, 
Fragos 2010, DG et al 2013 

Farris et al. 2014 

Low-q: supermassive BHs: accretion discs Low-q: stellar-mass BHs: SN kicks, tides 

N 63A SN remnant 



Aligned configurations

Do aligned binaries stay aligned in the 
gravitational-wave driven inspiral?

S1 S2L
up-up

S1 S2L
down-up

S1 S2L
up-down

S1 S2L
down-down

Astrophysical processes may drive binaries here 



A tale of three timescales
1. Orbital motion 
2. Spin & orbital-plane precession 
3. GW emission and inspiral

t
orb

/ (r/rg)
3/2

tpre / (r/rg)
5/2

tRR / (r/rg)
4

Kepler’s third law 

Quadrupole formula 
Peters & Matthews 1963

Apostolatos et al 1994

if (Post-)Newtonian

Precession InspiralOrbit << <<
:  timescale hierarchy

BH binary multi-timescale analysis:
1. Solve the dynamics (hopefully analytically) on the shorter time 

2. Quasi-adiabatic evolution (“average”) on the longer time

Common practice in  
binary dynamics 

• periastron precession 
• osculating orbital 

elements 
• variation of constants

r � rg = GM/c2

Kesden, DG et al 2014 
DG et al 2015a



Averaging the average

Standard orbit-averaged PN dynamics.  

Precession InspiralOrbit << <<
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FIG. 1. Reference frames used in this paper to study BBH
spin precession. The angles ✓

1

, ✓
2

, ��, and ✓

12

are defined
is a frame aligned with the orbital angular momentum L (left
panel). The binary dynamics can also be studied in a frame
aligned with the total angular momentum J (right panel).
Once L is taken to lie in the xz-plane, its direction is spec-
ified by S through the angle ✓L. The angle '

0 corresponds
to rotations of S1 and S2 about the total spin S. The two
frames pictured here are not inertial because the direction of
L changes together with the spins to conserve J. These angles
are defined in Eqs. (2), (4) and (9).

of these parameters, greatly reducing the number of de-
grees of freedom. At the PN order considered here, the
magnitudes of both spins are conserved throughout the
inspiral, reducing the number of degrees of freedom from
nine to seven. The magnitude of the orbital angular mo-
mentum is conserved on the precession time (although
it shrinks on the radiation-reaction time), further reduc-
ing the number of degrees of freedom from seven to six.
The total angular momentum J = L + S1 + S2 is also
conserved on the precession time, reducing the number
of degrees of freedom from six to three. As described
in greater detail in the next subsection, the projected
e↵ective spin ⇠ [55, 56] is also conserved by both the
orbit-averaged spin-precession equations at 2PN and ra-
diation reaction at 2.5 PN, providing a final constraint
that reduces the system to just two degrees of freedom.
In an appropriately chosen non-inertial reference frame
precessing about J, precessional motion associated with
one of these degrees of freedom can be suppressed, im-
plying that the relative orientations of the three angu-
lar momenta L, S1 and S2 can be specified by just a
single coordinate! We will provide an explicit analytic
construction of this procedure in this and the following
subsection.

We begin by introducing two alternative reference
frames in which the relative orientations of the three an-
gular momenta can be specified explicitly. As shown in
the left panel of Fig. 1, one may choose the z

0-axis to lie
along L, the x

0-axis such that S1 lies in the x

0

z

0-plane,
and the y

0-axis to complete the orthonormal triad. In

this frame only three independent coordinates are needed
to describe the relative orientations of the angular mo-
menta; we choose them to be the angles

cos ✓1 = ˆ

S1 · ˆL , (2a)

cos ✓2 = ˆ

S2 · ˆL , (2b)

cos �� =
ˆ

S1 ⇥ ˆ

L

|ˆS1 ⇥ ˆ

L| ·
ˆ

S2 ⇥ ˆ

L

|ˆS2 ⇥ ˆ

L| , (2c)

where the sign of �� is given by (cf. Fig. 1)

sgn �� = sgn{L · [(S1 ⇥ L) ⇥ (S2 ⇥ L)]}. (2d)

The relative orientations of the three angular momenta
can alternatively be specified in a frame aligned with the
total angular momentum J. For fixed values of L, S1,
and S2, the allowed range for J = |J| is

Jmin  J  Jmax (3a)

where

Jmin = max(0, L � S1 � S2, |S1 � S2| � L) , (3b)

Jmax = L + S1 + S2 . (3c)

As shown in the right panel of Fig. 1, one can choose the
z-axis parallel to J and the x-axis such that L lies in the
xz-plane:

J = J ẑ and L = L sin ✓Lx̂ + L cos ✓Lẑ . (4)

The third unit vector ŷ = ẑ ⇥ x̂ completes the orthonor-
mal triad. The total spin S = S1 + S2 = J � L will also
lie in the xz-plane:

S = �L sin ✓Lx̂ + (J � L cos ✓L)ẑ , (5)

implying

cos ✓L =
J

2 + L

2 � S

2

2JL

. (6)

We can also define a unit vector

Ŝ

?

=
(J � L cos ✓L)x̂ + L sin ✓Lẑ

S

(7)

which also lies in the xz-plane but is orthogonal to Ŝ.
While the magnitudes L and J of the orbital and to-

tal angular momenta are conserved on the precession
timescale, the same is not true for the total-spin mag-
nitude S, which oscillates within the range

Smin  S  Smax , (8a)

where

Smin = max(|J � L|, |S1 � S2|) , (8b)

Smax = min(J + L, S1 + S2) . (8c)

The relative orientation of the three momenta is 
described by 4 variables r, ✓1, ✓2, ��

Precession InspiralOrbit << <<

Damour 2001; Racine 2008

tRR• Separation    varies on  
• Also                                varies on  
• Effective spin is constant (at least) at 2PN!

Let’s freeze GW emission
r

J = |L+ S1 + S2|

4

S can be used as a generalized coordinate to specify
the directions of the angular momenta J, L, and S; we
can see from Eqs. (4) - (6) that it is the only coordinate
needed to specify these directions in the xyz-frame.

Specifying the directions of the individual spins S1 and
S2 in the xyz-frame requires an additional generalized
coordinate, which can be chosen to be the angle '

0 be-
tween Ŝ

?

in Eq. (7) and the projection of S1 into the
plane spanned by Ŝ

?

and ŷ, as shown in the right panel
of Fig. 1. This angle corresponds to rotations of S1 and
S2 about S and is given analytically by

cos '

0 =
ˆ

S1 · ˆS
?

|ˆS1 ⇥ ˆ

S| . (9)

In terms of the two coordinates S and '

0 varying on the
precession timescale, the three angular momenta in the
xyz-frame are

L =
A1A2

2J

x̂ +
J

2 + L

2 � S

2

2J

ẑ , (10a)

S1 =
S

2 + S

2
1 � S

2
2

2S

Ŝ +
A3A4

2S

(cos '

0

Ŝ

?

+ sin '

0

ŷ)

=
1

4JS

2
[�(S2 + S

2
1 � S

2
2)A1A2

+ (J2 � L

2 + S

2)A3A4 cos '

0]x̂

+
1

2S

A3A4 sin '

0

ŷ

+
1

4JS

2
[(S2 + S

2
1 � S

2
2)(J2 � L

2 + S

2)

+ A1A2A3A4 cos '

0]ẑ , (10b)

S2 =
S

2 + S

2
2 � S

2
1

2S

Ŝ � A3A4

2S

(cos '

0

Ŝ

?

+ sin '

0

ŷ)

= � 1

4JS

2
[(S2 + S

2
2 � S

2
1)A1A2

+ (J2 � L

2 + S

2)A3A4 cos '

0]x̂

� 1

2S

A3A4 sin '

0

ŷ

+
1

4JS

2
[(S2 + S

2
2 � S

2
1)(J2 � L

2 + S

2)

� A1A2A3A4 cos '

0]ẑ , (10c)

where we defined:

A1 ⌘ [J2 � (L � S)2]1/2
, (11a)

A2 ⌘ [(L + S)2 � J

2]1/2
, (11b)

A3 ⌘ [S2 � (S1 � S2)
2]1/2

, (11c)

A4 ⌘ [(S1 + S2)
2 � S

2]1/2
. (11d)

All the Ai’s are real and positive in the ranges specified
by Eqs. (3) and (8).

B. E↵ective potentials and resonances

As anticipated in the previous subsection, there is an
additional conserved quantity that can be used to elimi-

nate '

0 and thereby specify L, S1, and S2 with the single
generalized coordinate S. This quantity is the projected
e↵ective spin [55, 56]

⇠ ⌘ M

�2[(1 + q)S1 + (1 + q

�1)S2] · L̂ (12)

which is a constant of motion of the orbit-averaged spin-
precession equations at 2PN order and is also conserved
by radiation reaction at 2.5 PN order. Using Eqs. (10),
we can express ⇠ as a function of S and '

0

⇠(S, '

0) = {(J2 � L

2 � S

2)[S2(1 + q)2 � (S2
1 � S

2
2)(1 � q

2)]

� (1 � q

2)A1A2A3A4 cos '

0}/(4qM

2
S

2
L) .

(13)

Conservation of ⇠ restricts binary evolution to one-
dimensional curves ⇠(S, '

0) = ⇠ in the S'

0-plane as
shown in the right panel of Fig. 2. The simple depen-
dence of ⇠(S, '

0) on '

0 motivates us to define two “e↵ec-
tive potentials” [1] corresponding to the extreme cases
cos '

0 = ⌥1 for which L, S1 and S2 are all coplanar:

⇠

±

(S) = {(J2 � L

2 � S

2)[S2(1 + q)2 � (S2
1 � S

2
2)(1 � q

2)]

± (1 � q

2)A1A2A3A4}/(4qM

2
S

2
L) . (14)

At Smin and Smax

⇠

�

(Smin) = ⇠+(Smin) , ⇠

�

(Smax) = ⇠+(Smax) , (15)

because one of the Ai’s defined in Eqs. (11) vanishes if
S = Smin or S = Smax. The functions ⇠

±

(S) thus form
a loop that encloses all allowed values of S and ⇠, as
shown in the left panel of Fig. 2. BBHs are constrained
to evolve back and forth along horizontal line segments of
constant ⇠ bounded by the two e↵ective potentials ⇠

±

(S).
The turning points in the evolution of S are given by
the solutions of ⇠

±

(S) = ⇠, where the binary meets an
e↵ective potential. Once squared, the equation ⇠

±

(S) =
⇠ reduces to the following cubic equation in S

2:

�6S
6 + �4S

4 + �2S
2 + �0 = 0 , (16a)

where

�6 = q(1 + q)2 , (16b)

�4 = (1 + q)2[�2J

2
q + L

2
�
1 + q

2
�

+ 2LM

2
⇠q

+ (1 � q)
�
S

2
2 � qS

2
1

�
] , (16c)

�2 = 2(1 + q)2(1 � q)[J2(qS2
1 � S

2
2)

� L

2(S2
1 � qS

2
2)] + q(1 + q)2(J2 � L

2)2

� 2LM

2
⇠q(1 + q)[(1 + q)(J2 � L

2)

+ (1 � q)(S2
1 � S

2
2)] + 4L

2
M

4
⇠

2
q

2
, (16d)

�0 = (1 � q

2)[L2(1 � q

2)(S2
1 � S

2
2)2

� (1 + q)(qS2
1 � S

2
2)(J2 � L

2)2

+ 2LM

2
q⇠(S2

1 � S

2
2)(J2 � L

2)] , (16e)

which admits at most three real solutions for S > 0. The
number of solutions in the range allowed by Eqs. (8) must

tRR
Double-spin precession  
is (actually) a 1D problem!

S = |S1 + S2|

Precession InspiralOrbit << <<
Quasi-adiabatic evolution of the 1D precessional solutions

arXiv:1506.03492 

Kesden, DG et al 2014 
DG et al 2015aInnovative precession-averaged PN dynamics.  

e.g. Kidder 1995



Kepler’s two-body problem
What you do: 
• One effective particle: 3D 
• 3D to 2D problem:                        

L is a constant of motion! 
• Energy is constant: 2D to 1D 
• Effective potential

On the shoulders of giants

What you get: 
• Solutions are Kepler’s orbits 
• A lot of understanding

Integrating                  to get a bunch of points along an orbit or…  
knowing that that curve is an ellipse! 

GMm/r2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Separation

�0.4

�0.2

0.0

0.2

0.4

E
n
er

gy

Ve↵

V



Effective potentials for spin precession
What you do: 
• 4D to 2D problem: GW are frozen,                       

r and J are constant, 
• Further constant of motion,     

effective spin: 2D to 1D 
• Effective potentials for BH binary    

spin precession
What you get: 
• Analytical solutions 
• A lot of understanding

Integrating the PN eq. to get a bunch 
of points on a precession cone or… 
knowing the shape of that cone! 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

S/M 2

�0.15

�0.10

�0.05

0.00

0.05

0.10

⇠

⇠min

Smin

S
max

⇠
max

• Geometrical constraints: 
only within the loop! 

• All configurations once you 
fixed q, spins mag., r and J 

• Evolution in S is precession 
• Spin-orbit resonances.

How it works: 

Schnittman 2004



Aligned configurations

All these configurations are solutions  
of the PN equations at any separation, but…  

are they stable?

S1 S2L
up-up

J = L+ S1 + S2

S1 S2L
down-up

J = |L� S1 + S2|

S1 S2L
up-down

J = |L+ S2 � S1|

S1 S2L
down-down
J = |L� S1 � S2|

How about these configurations? 



2

0.460

0.465

0.470

FIG. 1. E↵ective-potential loops ⇠
±

(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S

±

where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
nary BHs with total mass M = m

1

+ m

2

, mass ratio
q = m

2

/m

1

 1, symmetric mass ratio ⌘ = q/(1 + q)2,
and spins Si = �im

2

i Ŝi evolve on three distinct time
scales: the orbital time t

orb

= (r3/M)1/2 on which
their separation r changes direction, the precession time
t

pre

= (t
orb

/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
orb

/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
⇠ ⌘ M

�2[(1+q)S
1

+(1+q

�1)S
2

]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-

cillates back and forth between the two roots S

±

of the
equation ⇠ = ⇠

±

(S), where

⇠

±

(S) = {(J2 � L

2 � S

2)[S2(1 + q)2 � (S2

1

� S

2

2

)(1 � q

2)]

± (1 � q

2)
p

[J2 � (L � S)2][(L + S)2 � J

2]

⇥
p

[S2 � (S
1

� S

2

)2][(S
1

+ S

2

)2 � S

2]}
�
(4qM2

S

2

L) ,
(1)

are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S

1

, and S
2

all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S
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)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
J = |L � S
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|). The e↵ective-
potential loop ⇠
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(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠
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. Since the spins are
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(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
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extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
nary BHs with total mass M = m

1

+ m

2

, mass ratio
q = m

2
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1

 1, symmetric mass ratio ⌘ = q/(1 + q)2,
and spins Si = �im

2

i Ŝi evolve on three distinct time
scales: the orbital time t

orb

= (r3/M)1/2 on which
their separation r changes direction, the precession time
t
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= (t
orb

/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
orb

/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
⇠ ⌘ M

�2[(1+q)S
1

+(1+q

�1)S
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]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-

cillates back and forth between the two roots S

±
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are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S
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, and S
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pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S
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all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S
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)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
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FIG. 1. E↵ective-potential loops ⇠
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(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S
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where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
nary BHs with total mass M = m

1

+ m

2

, mass ratio
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 1, symmetric mass ratio ⌘ = q/(1 + q)2,
and spins Si = �im
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scales: the orbital time t
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= (r3/M)1/2 on which
their separation r changes direction, the precession time
t
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= (t
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/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
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/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
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�2[(1+q)S
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+(1+q

�1)S
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]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-
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of the
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(S), where

⇠

±

(S) = {(J2 � L

2 � S

2)[S2(1 + q)2 � (S2

1

� S

2

2

)(1 � q

2)]

± (1 � q

2)
p

[J2 � (L � S)2][(L + S)2 � J

2]

⇥
p

[S2 � (S
1

� S

2

)2][(S
1

+ S

2

)2 � S

2]}
�
(4qM2

S

2

L) ,
(1)

are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S
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, and S
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all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S

1

+ S

2

)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
J = |L � S

1

+ S

2

| (J = |L + S

1

� S
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|). The e↵ective-
potential loop ⇠

±

(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠

min,max

. Since the spins are
antialigned with each other in both configurations, S is
minimized at S

min

= |S
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| and both configurations
sit on the leftmost point of the loop, where ⇠

+
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FIG. 1. E↵ective-potential loops ⇠
±

(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S

±

where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
nary BHs with total mass M = m

1
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2

, mass ratio
q = m

2
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 1, symmetric mass ratio ⌘ = q/(1 + q)2,
and spins Si = �im

2

i Ŝi evolve on three distinct time
scales: the orbital time t

orb

= (r3/M)1/2 on which
their separation r changes direction, the precession time
t
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= (t
orb

/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
orb

/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
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�2[(1+q)S
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]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-
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are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S

1

, and S
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all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S

1
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2

)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
J = |L � S
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| (J = |L + S
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|). The e↵ective-
potential loop ⇠
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(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠
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. Since the spins are
antialigned with each other in both configurations, S is
minimized at S
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FIG. 1. E↵ective-potential loops ⇠
±

(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S
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where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
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 1, symmetric mass ratio ⌘ = q/(1 + q)2,
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scales: the orbital time t
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/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
orb

/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
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, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
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the advantage that only S evolves on t
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, while J evolves
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and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
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are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
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action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S
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of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S
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all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S
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)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
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|). The e↵ective-
potential loop ⇠
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. Since the spins are
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FIG. 1. E↵ective-potential loops ⇠
±

(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S
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where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
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and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
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are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S

1

, and S
2

all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S
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)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
J = |L � S
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| (J = |L + S
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|). The e↵ective-
potential loop ⇠

±

(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠

min,max

. Since the spins are
antialigned with each other in both configurations, S is
minimized at S

min

= |S
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� S
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| and both configurations
sit on the leftmost point of the loop, where ⇠

+

(S) and
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FIG. 2. The angles cos ✓i = Ŝi · L̂ for spin-orbit resonances
[extrema of ⇠

±

(S)] for BHs with q = 0.95, �1 = 0.3, and
�2 = 1. The solid (dashed) curves indicate the �� = 0 (⇡)
family and the five curves for each family correspond to binary
separations r/M = 3000, 720, 170, 40, and 10. The up-down
configuration (bottom right corner) belongs to the �� = 0
family for r > rud+ ' 2149M , to the �� = ⇡ family for r <
rud� ' 13M , and is unstable for intermediate values rud� <
r < rud+. An animated version of this figure is available
online at Ref. [35].

⇠
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(S) coincide. Whether this point is also an extremum
⇠

min,max

depends on the slopes of these two functions
at that point. Both slopes are always negative for the
down-up configuration, implying that it is a maximum
⇠

max

and thus a spin-orbit resonance like the up-up and
down-down configurations. At large binary separations
r, the slopes of ⇠

±

(S) are both positive for the up-down
configuration, making it a minimum ⇠

min

. However, be-
low r

ud+

given by

r

ud±

=
(
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)4

(1 � q)2
M , (2)

the slope of ⇠
�

(S) becomes negative and up-down is no
longer an extremum of the e↵ective-potential loop, as
seen in Fig. 1. At separations below r

ud�

, the slope of
⇠

+

(S) also becomes negative and up-down is again an
extremum, this time a maximum ⇠

max

. Misaligned BHs
with the same values of J and ⇠ as the up-down con-
figuration but S > S

min

exist in the intermediate range
r

ud�

< r < r

ud+

, as shown by the dashed red line. These
misaligned BHs have an infinite precessional period ⌧ :
they exponentially approach the up-down configuration
on the precession time t

pre

but never reach it.
The evolving relationship between the up-down con-

figuration and the spin-orbit resonances parameterized
by the angles ✓i is seen in Fig. 2. The solid curves
show the �� = 0 resonances [⇠

min

(J)] for separations
10M  r  3000M , while the dashed curves show the
�� = ⇡ resonances [⇠

max

(J)]. The up-down configura-

FIG. 3. Precession-averaged radiation reaction dJ/dL as a
function of J and ⇠ for binaries with q = 0.8, �1 = �2 = 1, and
separation r = 10M in the unstable region rud� < r < rud+.
Spin-orbit resonances including the up-up, down-down, and
down-up configurations are extrema of ⇠

±

(S) and constitute
the boundary of the allowed region. All four aligned con-
figurations are maxima where dJ/dL = 1, but the unstable
up-down configuration (shown in the inset) is a cusp. An
animated version of this figure is available online at Ref. [35].

tion is located in the bottom right corner of this figure.
For r > r

ud+

, the up-down configuration lies on the solid
curves and belongs to the �� = 0 family, but for smaller
separations these curves detach from the bottom right
corner, and thus up-down is no longer a minimum of
⇠

±

(S). The dashed curves indicating the �� = ⇡ fam-
ily migrate to the right with decreasing separation and
reach the bottom right corner, making the up-down con-
figuration a maximum of ⇠

±

(S), for r < r

ud�

. The up-up
and down-down configurations (top right and bottom left
corners) belong to both resonant families, reflecting the
degeneracy of the e↵ective-potential loop as a single point
that is both minimum and maximum. The down-up con-
figuration (top left) always belongs to the �� = ⇡ family
and is thus a maximum ⇠

max

.
The stability of a system is determined by its re-

sponse to perturbations, in this case to the spin angles
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2

, ���) or equivalently to the angular momenta
(�S, �J, �⇠). After such a perturbation, configurations
that are extrema of ⇠

±

(S) (all aligned configurations ex-
cept up-down for r

ud�

< r < r

ud+

) will undergo oscil-
lations in S (and thus the three spin angles) that are
linear in the perturbation amplitude, and have a period
⌧ that is independent of this amplitude. This is a sta-
ble response equivalent to that of a simple harmonic os-
cillator. The response of the up-down configuration for
r

ud�

< r < r

ud+

is very di↵erent, as seen in the middle
panels of Fig. 1: S oscillates between the turning points
S

±

independent of the perturbation amplitude, but the
period ⌧ of these oscillations – as predicted by Eq. (27) of
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configuration (bottom right corner) belongs to the �� = 0
family for r > rud+ ' 2149M , to the �� = ⇡ family for r <
rud� ' 13M , and is unstable for intermediate values rud� <
r < rud+. An animated version of this figure is available
online at Ref. [35].

⇠

�

(S) coincide. Whether this point is also an extremum
⇠

min,max

depends on the slopes of these two functions
at that point. Both slopes are always negative for the
down-up configuration, implying that it is a maximum
⇠

max

and thus a spin-orbit resonance like the up-up and
down-down configurations. At large binary separations
r, the slopes of ⇠

±

(S) are both positive for the up-down
configuration, making it a minimum ⇠

min

. However, be-
low r

ud+

given by

r

ud±

=
(
p
�

1

± p
q�

2

)4

(1 � q)2
M , (2)

the slope of ⇠
�

(S) becomes negative and up-down is no
longer an extremum of the e↵ective-potential loop, as
seen in Fig. 1. At separations below r

ud�

, the slope of
⇠

+

(S) also becomes negative and up-down is again an
extremum, this time a maximum ⇠

max

. Misaligned BHs
with the same values of J and ⇠ as the up-down con-
figuration but S > S

min

exist in the intermediate range
r

ud�

< r < r

ud+

, as shown by the dashed red line. These
misaligned BHs have an infinite precessional period ⌧ :
they exponentially approach the up-down configuration
on the precession time t

pre

but never reach it.
The evolving relationship between the up-down con-

figuration and the spin-orbit resonances parameterized
by the angles ✓i is seen in Fig. 2. The solid curves
show the �� = 0 resonances [⇠

min

(J)] for separations
10M  r  3000M , while the dashed curves show the
�� = ⇡ resonances [⇠

max

(J)]. The up-down configura-

FIG. 3. Precession-averaged radiation reaction dJ/dL as a
function of J and ⇠ for binaries with q = 0.8, �1 = �2 = 1, and
separation r = 10M in the unstable region rud� < r < rud+.
Spin-orbit resonances including the up-up, down-down, and
down-up configurations are extrema of ⇠

±
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and down-down configurations (top right and bottom left
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Precession if  
there are many S for fixed J and 

4

S can be used as a generalized coordinate to specify
the directions of the angular momenta J, L, and S; we
can see from Eqs. (4) - (6) that it is the only coordinate
needed to specify these directions in the xyz-frame.

Specifying the directions of the individual spins S1 and
S2 in the xyz-frame requires an additional generalized
coordinate, which can be chosen to be the angle '

0 be-
tween Ŝ

?

in Eq. (7) and the projection of S1 into the
plane spanned by Ŝ

?

and ŷ, as shown in the right panel
of Fig. 1. This angle corresponds to rotations of S1 and
S2 about S and is given analytically by

cos '

0 =
ˆ

S1 · ˆS
?

|ˆS1 ⇥ ˆ

S| . (9)

In terms of the two coordinates S and '

0 varying on the
precession timescale, the three angular momenta in the
xyz-frame are
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0]ẑ , (10b)
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where we defined:

A1 ⌘ [J2 � (L � S)2]1/2
, (11a)

A2 ⌘ [(L + S)2 � J

2]1/2
, (11b)

A3 ⌘ [S2 � (S1 � S2)
2]1/2

, (11c)

A4 ⌘ [(S1 + S2)
2 � S

2]1/2
. (11d)

All the Ai’s are real and positive in the ranges specified
by Eqs. (3) and (8).

B. E↵ective potentials and resonances

As anticipated in the previous subsection, there is an
additional conserved quantity that can be used to elimi-

nate '

0 and thereby specify L, S1, and S2 with the single
generalized coordinate S. This quantity is the projected
e↵ective spin [55, 56]

⇠ ⌘ M

�2[(1 + q)S1 + (1 + q

�1)S2] · L̂ (12)

which is a constant of motion of the orbit-averaged spin-
precession equations at 2PN order and is also conserved
by radiation reaction at 2.5 PN order. Using Eqs. (10),
we can express ⇠ as a function of S and '

0
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2
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Conservation of ⇠ restricts binary evolution to one-
dimensional curves ⇠(S, '

0) = ⇠ in the S'

0-plane as
shown in the right panel of Fig. 2. The simple depen-
dence of ⇠(S, '

0) on '

0 motivates us to define two “e↵ec-
tive potentials” [1] corresponding to the extreme cases
cos '

0 = ⌥1 for which L, S1 and S2 are all coplanar:
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At Smin and Smax

⇠

�

(Smin) = ⇠+(Smin) , ⇠

�

(Smax) = ⇠+(Smax) , (15)

because one of the Ai’s defined in Eqs. (11) vanishes if
S = Smin or S = Smax. The functions ⇠

±

(S) thus form
a loop that encloses all allowed values of S and ⇠, as
shown in the left panel of Fig. 2. BBHs are constrained
to evolve back and forth along horizontal line segments of
constant ⇠ bounded by the two e↵ective potentials ⇠

±

(S).
The turning points in the evolution of S are given by
the solutions of ⇠

±

(S) = ⇠, where the binary meets an
e↵ective potential. Once squared, the equation ⇠

±

(S) =
⇠ reduces to the following cubic equation in S
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�4 = (1 + q)2[�2J

2
q + L

2
�
1 + q

2
�

+ 2LM

2
⇠q

+ (1 � q)
�
S

2
2 � qS

2
1

�
] , (16c)

�2 = 2(1 + q)2(1 � q)[J2(qS2
1 � S

2
2)

� L

2(S2
1 � qS

2
2)] + q(1 + q)2(J2 � L

2)2

� 2LM

2
⇠q(1 + q)[(1 + q)(J2 � L

2)

+ (1 � q)(S2
1 � S

2
2)] + 4L

2
M

4
⇠

2
q

2
, (16d)

�0 = (1 � q

2)[L2(1 � q

2)(S2
1 � S

2
2)2

� (1 + q)(qS2
1 � S

2
2)(J2 � L

2)2

+ 2LM

2
q⇠(S2

1 � S

2
2)(J2 � L

2)] , (16e)

which admits at most three real solutions for S > 0. The
number of solutions in the range allowed by Eqs. (8) must
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FIG. 1. E↵ective-potential loops ⇠
±

(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S

±

where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
nary BHs with total mass M = m

1

+ m

2

, mass ratio
q = m

2

/m

1

 1, symmetric mass ratio ⌘ = q/(1 + q)2,
and spins Si = �im

2

i Ŝi evolve on three distinct time
scales: the orbital time t

orb

= (r3/M)1/2 on which
their separation r changes direction, the precession time
t

pre

= (t
orb

/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
orb

/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
⇠ ⌘ M

�2[(1+q)S
1

+(1+q

�1)S
2

]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-

cillates back and forth between the two roots S
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of the
equation ⇠ = ⇠
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are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠
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(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S
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, and S
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all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S
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)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
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|). The e↵ective-
potential loop ⇠
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(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠
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. Since the spins are
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(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S
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where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
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/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t
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. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
⇠ ⌘ M

�2[(1+q)S
1

+(1+q

�1)S
2

]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-

cillates back and forth between the two roots S

±

of the
equation ⇠ = ⇠

±

(S), where

⇠

±

(S) = {(J2 � L
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are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S

1

, and S
2

all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S

1

+ S

2

)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
J = |L � S

1

+ S

2

| (J = |L + S

1

� S

2

|). The e↵ective-
potential loop ⇠

±

(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠

min,max

. Since the spins are
antialigned with each other in both configurations, S is
minimized at S

min

= |S
1

� S

2

| and both configurations
sit on the leftmost point of the loop, where ⇠

+

(S) and
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FIG. 1. E↵ective-potential loops ⇠
±

(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S

±

where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
nary BHs with total mass M = m

1

+ m

2

, mass ratio
q = m

2

/m

1

 1, symmetric mass ratio ⌘ = q/(1 + q)2,
and spins Si = �im

2

i Ŝi evolve on three distinct time
scales: the orbital time t

orb

= (r3/M)1/2 on which
their separation r changes direction, the precession time
t

pre

= (t
orb

/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
orb

/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
⇠ ⌘ M

�2[(1+q)S
1

+(1+q

�1)S
2

]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-

cillates back and forth between the two roots S

±

of the
equation ⇠ = ⇠

±

(S), where
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are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S

1

, and S
2

all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S

1

+ S

2

)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
J = |L � S

1

+ S

2

| (J = |L + S

1

� S

2

|). The e↵ective-
potential loop ⇠

±

(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠

min,max

. Since the spins are
antialigned with each other in both configurations, S is
minimized at S

min

= |S
1

� S

2

| and both configurations
sit on the leftmost point of the loop, where ⇠

+

(S) and
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FIG. 1. E↵ective-potential loops ⇠
±

(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S

±

where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
nary BHs with total mass M = m

1

+ m

2

, mass ratio
q = m

2

/m

1

 1, symmetric mass ratio ⌘ = q/(1 + q)2,
and spins Si = �im

2

i Ŝi evolve on three distinct time
scales: the orbital time t

orb

= (r3/M)1/2 on which
their separation r changes direction, the precession time
t

pre

= (t
orb

/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
orb

/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
⇠ ⌘ M

�2[(1+q)S
1

+(1+q

�1)S
2

]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-

cillates back and forth between the two roots S

±

of the
equation ⇠ = ⇠

±

(S), where
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are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S

1

, and S
2

all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S

1

+ S

2

)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
J = |L � S

1

+ S

2

| (J = |L + S

1

� S

2

|). The e↵ective-
potential loop ⇠

±

(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠

min,max

. Since the spins are
antialigned with each other in both configurations, S is
minimized at S

min

= |S
1

� S

2

| and both configurations
sit on the leftmost point of the loop, where ⇠

+

(S) and
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FIG. 1. E↵ective-potential loops ⇠
±

(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S

±

where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
nary BHs with total mass M = m

1

+ m

2

, mass ratio
q = m

2

/m

1

 1, symmetric mass ratio ⌘ = q/(1 + q)2,
and spins Si = �im

2

i Ŝi evolve on three distinct time
scales: the orbital time t

orb

= (r3/M)1/2 on which
their separation r changes direction, the precession time
t

pre

= (t
orb

/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
orb

/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
⇠ ⌘ M

�2[(1+q)S
1

+(1+q

�1)S
2

]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-

cillates back and forth between the two roots S

±

of the
equation ⇠ = ⇠
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(S), where

⇠

±

(S) = {(J2 � L

2 � S

2)[S2(1 + q)2 � (S2

1

� S

2

2

)(1 � q

2)]

± (1 � q

2)
p

[J2 � (L � S)2][(L + S)2 � J

2]

⇥
p

[S2 � (S
1

� S

2

)2][(S
1

+ S

2

)2 � S

2]}
�
(4qM2

S

2

L) ,
(1)

are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S

1

, and S
2

all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S

1

+ S

2

)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
J = |L � S

1

+ S

2

| (J = |L + S

1

� S

2

|). The e↵ective-
potential loop ⇠

±

(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠

min,max

. Since the spins are
antialigned with each other in both configurations, S is
minimized at S

min

= |S
1
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| and both configurations
sit on the leftmost point of the loop, where ⇠
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(S) and
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FIG. 1. E↵ective-potential loops ⇠
±

(S) for binary BHs with mass ratio q = 0.9, dimensionless spins �1 = 1, �2 = 0.14, and total
angular momentum J = |L + S1 � S2|, corresponding to the up-down configuration. For binary separations r > rud+ ' 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At
intermediate separations rud+ > r > rud� ' 17M (middle panels), misaligned binaries with the same value of the conserved ⇠
exist along the dashed red line. Perturbations �J , �⇠ will cause S to oscillate between the points S

±

where this line intersects
the loop, making the up-down configuration unstable. For r < rud� (right panel), the up-down configuration is again a stable
extremum, now a maximum (marked by the upper triangle). An animated version of this figure is available online at Ref. [35].

these solutions stable? To answer this question, we inves-
tigate how the configurations respond to perturbations of
the spin directions using our recently developed approach
for studying generically precessing systems [36, 37]. As
we will demonstrate below, the up-down configuration is
unstable for certain choices of binary parameters, with
significant consequences for GW data analysis and astro-
physics.
Generic spin precession. – Here we briefly summa-
rize the approach to spin precession described in de-
tail in [36, 37] using units where G = c = 1. Bi-
nary BHs with total mass M = m

1
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2

, mass ratio
q = m

2

/m

1

 1, symmetric mass ratio ⌘ = q/(1 + q)2,
and spins Si = �im

2

i Ŝi evolve on three distinct time
scales: the orbital time t

orb

= (r3/M)1/2 on which
their separation r changes direction, the precession time
t

pre

= (t
orb

/⌘)(r/M) on which the spins and orbital an-
gular momentum L change direction, and the radiation-
reaction time t

RR

= (t
orb

/⌘)(r/M)5/2 on which the mag-
nitudes r and L decrease due to GW emission. The
relative orientations of the spins are often specified by
the two angles cos ✓i = Ŝi · L̂ and the angle �� be-
tween the projections of the two spins onto the orbital
plane, all of which vary on t

pre

. The spin orientations
can equivalently be specified by the magnitudes of the
total spin S = S

1

+ S
2

, the total angular momentum
J = L + S, and the projected e↵ective spin [38, 39]
⇠ ⌘ M

�2[(1+q)S
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+(1+q

�1)S
2

]·L̂. This specification has
the advantage that only S evolves on t

pre

, while J evolves
on t

RR

and ⇠ is conserved throughout the post-Newtonian
(PN) stage of the inspiral (r & 10M) by orbit-averaged
2PN spin precession and 2.5PN radiation reaction [40].
On the precession time, the spin magnitude S simply os-

cillates back and forth between the two roots S
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of the
equation ⇠ = ⇠
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(S), where
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are the e↵ective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of
Eq. (1) changing on t

pre

; in the absence of radiation re-
action, the spins return to their initial relative orientation
after a time ⌧(L, J, ⇠) during which L, S

1

, and S
2

pre-
cess about J by an angle ↵(L, J, ⇠). The two potentials
⇠

±

(S) form a closed loop in the S⇠ plane, implying that
the two roots S

±

coincide at the extrema ⇠

min,max

(L, J)
of the loop. At these extrema, also known as spin-orbit
resonances [19], S does not oscillate and L, S

1

, and S
2

all remain coplanar on the precession time.
Stability of aligned configurations. – We begin with
the up-up and down-down configurations, for which
J = |L ± (S

1

+ S

2

)|, respectively. According to Eq. (1),
the e↵ective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ⇠. Now
consider the down-up (up-down) configurations for which
J = |L � S
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| (J = |L + S
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|). The e↵ective-
potential loop ⇠
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(S) encloses a nonzero area for these
values of J , implying that oscillations in S are possi-
ble, except at the extrema ⇠

min,max

. Since the spins are
antialigned with each other in both configurations, S is
minimized at S

min

= |S
1
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| and both configurations
sit on the leftmost point of the loop, where ⇠

+

(S) and
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FIG. 2. The angles cos ✓i = Ŝi · L̂ for spin-orbit resonances
[extrema of ⇠

±

(S)] for BHs with q = 0.95, �1 = 0.3, and
�2 = 1. The solid (dashed) curves indicate the �� = 0 (⇡)
family and the five curves for each family correspond to binary
separations r/M = 3000, 720, 170, 40, and 10. The up-down
configuration (bottom right corner) belongs to the �� = 0
family for r > rud+ ' 2149M , to the �� = ⇡ family for r <
rud� ' 13M , and is unstable for intermediate values rud� <
r < rud+. An animated version of this figure is available
online at Ref. [35].
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depends on the slopes of these two functions
at that point. Both slopes are always negative for the
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(S) becomes negative and up-down is no
longer an extremum of the e↵ective-potential loop, as
seen in Fig. 1. At separations below r
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, the slope of
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(S) also becomes negative and up-down is again an
extremum, this time a maximum ⇠
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. Misaligned BHs
with the same values of J and ⇠ as the up-down con-
figuration but S > S
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exist in the intermediate range
r

ud�
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, as shown by the dashed red line. These
misaligned BHs have an infinite precessional period ⌧ :
they exponentially approach the up-down configuration
on the precession time t
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but never reach it.
The evolving relationship between the up-down con-

figuration and the spin-orbit resonances parameterized
by the angles ✓i is seen in Fig. 2. The solid curves
show the �� = 0 resonances [⇠
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(J)] for separations
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ily migrate to the right with decreasing separation and
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. The up-up
and down-down configurations (top right and bottom left
corners) belong to both resonant families, reflecting the
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that is both minimum and maximum. The down-up con-
figuration (top left) always belongs to the �� = ⇡ family
and is thus a maximum ⇠
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⌧ that is independent of this amplitude. This is a sta-
ble response equivalent to that of a simple harmonic os-
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is very di↵erent, as seen in the middle
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S can be used as a generalized coordinate to specify
the directions of the angular momenta J, L, and S; we
can see from Eqs. (4) - (6) that it is the only coordinate
needed to specify these directions in the xyz-frame.

Specifying the directions of the individual spins S1 and
S2 in the xyz-frame requires an additional generalized
coordinate, which can be chosen to be the angle '

0 be-
tween Ŝ

?

in Eq. (7) and the projection of S1 into the
plane spanned by Ŝ

?

and ŷ, as shown in the right panel
of Fig. 1. This angle corresponds to rotations of S1 and
S2 about S and is given analytically by

cos '

0 =
ˆ

S1 · ˆS
?

|ˆS1 ⇥ ˆ

S| . (9)

In terms of the two coordinates S and '

0 varying on the
precession timescale, the three angular momenta in the
xyz-frame are
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Ŝ

?

+ sin '

0

ŷ)
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where we defined:

A1 ⌘ [J2 � (L � S)2]1/2
, (11a)

A2 ⌘ [(L + S)2 � J

2]1/2
, (11b)

A3 ⌘ [S2 � (S1 � S2)
2]1/2

, (11c)

A4 ⌘ [(S1 + S2)
2 � S

2]1/2
. (11d)

All the Ai’s are real and positive in the ranges specified
by Eqs. (3) and (8).

B. E↵ective potentials and resonances

As anticipated in the previous subsection, there is an
additional conserved quantity that can be used to elimi-

nate '

0 and thereby specify L, S1, and S2 with the single
generalized coordinate S. This quantity is the projected
e↵ective spin [55, 56]
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which is a constant of motion of the orbit-averaged spin-
precession equations at 2PN order and is also conserved
by radiation reaction at 2.5 PN order. Using Eqs. (10),
we can express ⇠ as a function of S and '
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Conservation of ⇠ restricts binary evolution to one-
dimensional curves ⇠(S, '

0) = ⇠ in the S'

0-plane as
shown in the right panel of Fig. 2. The simple depen-
dence of ⇠(S, '

0) on '

0 motivates us to define two “e↵ec-
tive potentials” [1] corresponding to the extreme cases
cos '

0 = ⌥1 for which L, S1 and S2 are all coplanar:
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At Smin and Smax
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because one of the Ai’s defined in Eqs. (11) vanishes if
S = Smin or S = Smax. The functions ⇠

±

(S) thus form
a loop that encloses all allowed values of S and ⇠, as
shown in the left panel of Fig. 2. BBHs are constrained
to evolve back and forth along horizontal line segments of
constant ⇠ bounded by the two e↵ective potentials ⇠

±

(S).
The turning points in the evolution of S are given by
the solutions of ⇠

±

(S) = ⇠, where the binary meets an
e↵ective potential. Once squared, the equation ⇠
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(S) =
⇠ reduces to the following cubic equation in S
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which admits at most three real solutions for S > 0. The
number of solutions in the range allowed by Eqs. (8) must
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Ref. [37] – diverges logarithmically as this amplitude ap-
proaches zero. This is an unstable response: the time it
takes for a zero-energy particle with dx/dt < 0 to travel
from finite x
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to �x in the unstable potential V = � 1
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similarly diverges logarithmically with �x.
A perturbative analysis of nearly aligned configura-

tions [41] can identify that perturbations can oscillate
at complex frequencies (indicating an instability) in the
same region r

ud�

< r < r

ud+

found here, but such analy-
sis cannot predict the amplitude of these perturbations or
their response to precession-averaged radiation reaction.
Radiation reaction. – We have shown that for
r

ud�

< r < r

ud+

, spin configurations with J and ⇠ in-
finitesimally close to the up-down configuration can expe-
rience finite-amplitude oscillations in S and the angles ✓

1

,
✓

2

, and ��. We now investigate how these configurations
evolve on the longer radiation-reaction time t

RR

. Since ⇠

is conserved throughout the inspiral and L monotonically
decreases at 2.5PN order, the only challenge is to evolve
J . In Refs. [36, 37] we derived a precession-averaged ex-
pression for dJ/dL, a contour plot of which is shown in
Fig. 3. The shaded region shows the allowed values of J
and ⇠ for this mass ratio, spin magnitudes, and binary
separation. The spin-orbit resonances, being extrema of
⇠

±

(S), constitute the boundaries of this region. The up-
up, down-down, and down-up configurations, being spin-
orbit resonances, lie on these boundaries. At r

ud+

, the
up-down configuration detaches from the right bound-
ary of this region [it stops being a minimum of ⇠

±

(S)]
and begins to migrate leftwards through the allowed re-
gion, eventually reattaching to the left boundary at r

ud�

[where it becomes a maximum of ⇠
±

(S)]. This is just an
alternative visualization of the four panels of Fig. 1.

For all four aligned configurations, J and L are aligned
so dJ/dL = 1 is maximized. However, the nature of
these maxima is very di↵erent for the stable and un-
stable configurations. For the stable configurations, the
partial derivatives of dJ/dL with respect to J and ⇠ re-
main finite, implying that neighboring points separated
by (�J, �⇠) slowly drift away at a rate that scales linearly
with these infinitesimal quantities. The unstable config-
uration however is a cusp where these partial derivatives
approach ±1, depending on whether this point in the J⇠
plane is approached from below or above. Neighboring
points (experiencing large-amplitude oscillations in S, as
seen in the middle panels of Fig. 1) rapidly deviate from
the up-down configuration as it sweeps across the allowed
region. This is an essential point: even if the stability of
the up-down configuration is restored in the PN regime
(r

ud�

> 10M), radiation reaction during the inspiral be-
tween r

ud±

will drive BHs initially in this configuration
to large misalignments prior to merger. The migration
of the up-down configuration through the J⇠ plane also
reconciles the instability with the empirical result that
isotropic spin distributions remain isotropic during the
inspiral [19, 20]: although nearby binaries may indeed
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FIG. 4. Normalized GW Fourier amplitude h̃ (cf. Ref. [41])
as a function of orbital frequency f and binary separation r
during the inspiral of BHs with q = 0.75 and �1 = �2 = 0.9.
At the initial separation r = 1000M , the spins are nearly
in the up-down configuration, but this configuration becomes
unstable below rud+ ' 157M , after which large precession-
induced modulations occur at frequencies accessible to GW
detectors.

be left behind, the unstable configuration will always en-
counter a fresh supply, until it is restored to stability at
the left edge of the allowed region.
GW astronomy. – Binaries with separations in the un-
stable region between r

ud±

emit GWs with frequencies in
the range f

ud±

' 6.4⇥104Hz(M/M

�

)�1(1�q)3/(
p
�

1

±p
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)6, within or below the sensitivity band of existing
and planned GW detectors [8–15]. In Fig. 4, we show the
waveform of one such binary initially near the up-down
configuration before entering the unstable region. Once
the binary crosses the threshold at r

ud+

, its waveform
develops large-amplitude precessional modulation on the
precession time t

pre

. The amplitude of this modulation
is independent of the initial deviation from the up-down
configuration: it is set by the finite-amplitude oscilla-
tions in S seen in the middle panels of Fig. 1. Modula-
tion occurs on two distinct time scales associated with
the precession of L in a frame aligned with J. In this
frame the direction of L is specified by the polar angle
cos ✓L = L̂ · Ĵ and the azimuthal angle �L in the plane
perpendicular to J. The longer of these time scales is ⌧

(the period of oscillations in ✓L), while the shorter time
scale is (2⇡/↵)⌧ (the precession-averaged time for �L to
change by 2⇡) [36, 37]. Measuring this modulation could
yield insights into the astrophysical origins of binary BHs
[18, 37]. Spin precession could also a↵ect the electro-
magnetic counterparts to BH mergers [42, 43] and the
probability of ejecting a supermassive BH from its host
galaxy [30–32, 44]. We look forward to confronting these
predictions with observations in the dawning age of GW
astronomy.
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their response to precession-averaged radiation reaction.
Radiation reaction. – We have shown that for
r

ud�

< r < r

ud+

, spin configurations with J and ⇠ in-
finitesimally close to the up-down configuration can expe-
rience finite-amplitude oscillations in S and the angles ✓

1

,
✓

2

, and ��. We now investigate how these configurations
evolve on the longer radiation-reaction time t

RR

. Since ⇠

is conserved throughout the inspiral and L monotonically
decreases at 2.5PN order, the only challenge is to evolve
J . In Refs. [36, 37] we derived a precession-averaged ex-
pression for dJ/dL, a contour plot of which is shown in
Fig. 3. The shaded region shows the allowed values of J
and ⇠ for this mass ratio, spin magnitudes, and binary
separation. The spin-orbit resonances, being extrema of
⇠

±

(S), constitute the boundaries of this region. The up-
up, down-down, and down-up configurations, being spin-
orbit resonances, lie on these boundaries. At r

ud+

, the
up-down configuration detaches from the right bound-
ary of this region [it stops being a minimum of ⇠

±

(S)]
and begins to migrate leftwards through the allowed re-
gion, eventually reattaching to the left boundary at r

ud�

[where it becomes a maximum of ⇠
±

(S)]. This is just an
alternative visualization of the four panels of Fig. 1.

For all four aligned configurations, J and L are aligned
so dJ/dL = 1 is maximized. However, the nature of
these maxima is very di↵erent for the stable and un-
stable configurations. For the stable configurations, the
partial derivatives of dJ/dL with respect to J and ⇠ re-
main finite, implying that neighboring points separated
by (�J, �⇠) slowly drift away at a rate that scales linearly
with these infinitesimal quantities. The unstable config-
uration however is a cusp where these partial derivatives
approach ±1, depending on whether this point in the J⇠
plane is approached from below or above. Neighboring
points (experiencing large-amplitude oscillations in S, as
seen in the middle panels of Fig. 1) rapidly deviate from
the up-down configuration as it sweeps across the allowed
region. This is an essential point: even if the stability of
the up-down configuration is restored in the PN regime
(r

ud�

> 10M), radiation reaction during the inspiral be-
tween r

ud±

will drive BHs initially in this configuration
to large misalignments prior to merger. The migration
of the up-down configuration through the J⇠ plane also
reconciles the instability with the empirical result that
isotropic spin distributions remain isotropic during the
inspiral [19, 20]: although nearby binaries may indeed

FIG. 4. Normalized GW Fourier amplitude h̃ (cf. Ref. [41])
as a function of orbital frequency f and binary separation r
during the inspiral of BHs with q = 0.75 and �1 = �2 = 0.9.
At the initial separation r = 1000M , the spins are nearly
in the up-down configuration, but this configuration becomes
unstable below rud+ ' 157M , after which large precession-
induced modulations occur at frequencies accessible to GW
detectors.

be left behind, the unstable configuration will always en-
counter a fresh supply, until it is restored to stability at
the left edge of the allowed region.
GW astronomy. – Binaries with separations in the un-
stable region between r

ud±

emit GWs with frequencies in
the range f

ud±

' 6.4⇥104Hz(M/M

�

)�1(1�q)3/(
p
�

1

±p
q�

2

)6, within or below the sensitivity band of existing
and planned GW detectors [8–15]. In Fig. 4, we show the
waveform of one such binary initially near the up-down
configuration before entering the unstable region. Once
the binary crosses the threshold at r

ud+

, its waveform
develops large-amplitude precessional modulation on the
precession time t

pre

. The amplitude of this modulation
is independent of the initial deviation from the up-down
configuration: it is set by the finite-amplitude oscilla-
tions in S seen in the middle panels of Fig. 1. Modula-
tion occurs on two distinct time scales associated with
the precession of L in a frame aligned with J. In this
frame the direction of L is specified by the polar angle
cos ✓L = L̂ · Ĵ and the azimuthal angle �L in the plane
perpendicular to J. The longer of these time scales is ⌧

(the period of oscillations in ✓L), while the shorter time
scale is (2⇡/↵)⌧ (the precession-averaged time for �L to
change by 2⇡) [36, 37]. Measuring this modulation could
yield insights into the astrophysical origins of binary BHs
[18, 37]. Spin precession could also a↵ect the electro-
magnetic counterparts to BH mergers [42, 43] and the
probability of ejecting a supermassive BH from its host
galaxy [30–32, 44]. We look forward to confronting these
predictions with observations in the dawning age of GW
astronomy.

cf. Klein et al. 2013 for the waveform model

Exciting prediction

Binaries that 
start precessing 

while being 
observed

For sensible masses, the 
onset of the instability is in 

the LIGO and eLISA band!
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