Global simulations of magnetized disks in non-ideal GRMHD: connecting small and large scale phenomena

Matteo Bugli

Ewald Müller, Pedro Montero, Luca Del Zanna, Niccolò Bucciantini

1Max Planck Institut für Astrophysik, Garching bei München
2Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia
3INAF, Osservatorio Astrofisico di Arcetri, Firenze

28th Texas Symposium
Geneva, 17th December 2015
Outline

1 Introduction
 - Accretion disks and magnetic turbulence
 - Numerical simulations

2 Non-ideal GRMHD
 - $\alpha\Omega$ Dynamo
 - Resistive GRMHD

3 Kinematic Dynamo in Magnetized Disks
 - Disk model
 - Study of the $\alpha\Omega$ dynamo

4 Current developments and perspectives
Accretion disks and magnetic fields

- **Accretion on compact objects** is commonly retained as the most plausible mechanism to power up a list of astrophysical systems (AGNs, GRBs, X-Ray Binaries, etc...).

- **Ordered magnetic fields on large scales** are a fundamental part of many processes related to accretion disks:
 - Relativistic Jets in AGNs (McKinney and Blandford, 2009)
 - Blandford-Znajek mechanism (Blandford and Znajek, 1977)
 - MRI (Balbus and Hawley, 1998)

- **Magnetized plasmas are prone to develop turbulent behavior** on small scales.

On large scales one can have in principle **dissipation** and **dynamo action**.
Numerical simulations

Shearing box

- Cartesian box placed corotating with the flow.
- Coriolis and centrifugal forces combined with gravity in an effective potential.
- Good description of the local behavior of the plasma in thin accretion disks (Shakura and Sunyaev, 1973).
- Major tool to study MRI.
- Doesn’t allow a global description of the disk.

Global

- Full description of the disk, including formation of relativistic jets and winds.
- Possible evolution on time-scales much larger than the dynamical one.
- Closer chance to provide observationally testable models.
- Typical length-scales of the turbulent instabilities not resolved.

(Gammie et al., 2003)
To connect small and large scales one can adopt a specific closure scheme in GRMHD:

- Ohmic resistivity in neutron star mergers (Dionysopoulou et al., 2015).
- Sub-grid dynamo in thick accretion disks with radiation field (Sądowski et al., 2015).

Our approach focuses on a covariant formulation of Ohm’s law involving both resistivity and mean-field dynamo action.
Non-ideal effects in GRMHD
Mean field dynamo in Classical MHD

Consider a resistive plasma with large-scale fields and small-scale fluctuations:

\[V(x, t) = V_0(x, t) + v(x, t) \]
\[B(x, t) = B_0(x, t) + b(x, t) \]

The induction equation for the mean magnetic field reads (Moffatt, 1978):

\[\frac{\partial B_0}{\partial t} = \nabla \times (V_0 \times B_0) + \eta \nabla^2 B_0 + \nabla \times \mathcal{E} \]
\[\mathcal{E} = \langle v \times b \rangle \simeq \alpha B_0 - \beta \nabla \times B_0 \]

\[\downarrow \]

\[\frac{\partial B_0}{\partial t} = \nabla \times (V_0 \times B_0) + (\eta + \beta) \nabla^2 B_0 + \nabla \times (\alpha B_0) \]

- Increase of the magnetic resistivity
- Generation of currents parallel to the magnetic field
The $\alpha\Omega$ dynamo

Considering **poloidal** and **toroidal** components:

\[
\frac{\partial A}{\partial t} + (U_P \cdot \nabla) A = \alpha B + \eta \nabla^2 A \\
\frac{\partial B}{\partial t} + (U_P \cdot \nabla) B = (B_P \cdot \nabla) U + \eta \nabla^2 B
\]

- α **Effect**: toroidal field \Rightarrow toroidal currents (mean field dynamo) \Rightarrow poloidal field
- Ω **Effect**: poloidal field \Rightarrow stretching (differential rotation) \Rightarrow toroidal field

Closed Dynamo Cycle

$B_P \Rightarrow B_T \Rightarrow J_T \Rightarrow B_P$
Resistive MHD in General Relativity
General Relativistic Maxwell’s equations

Line element (ADM form):

\[ds^2 = -\alpha^2 dt^2 + \gamma_{ij}(dx^i + \beta^i dt)(dx^j + \beta^j dt) \]

\[\alpha_{lapse} \neq \alpha_{dyn} ! \]

Faraday’s Law:

\[\gamma^{-1/2} \partial_t \left(\gamma^{1/2} B \right) + \nabla \times (\alpha E + \beta \times B) = 0 \]

Ampere’s Law:

\[\gamma^{-1/2} \partial_t \left(\gamma^{1/2} E \right) + \nabla \times (-\alpha B + \beta \times E) = -(\alpha J - q\beta) \]

\[\nabla \cdot B = 0 \]
\[\nabla \cdot E = q \]
Ohm’s law

Fully covariant Ohm’s law (in the fluid reference frame)

For a resistive plasma (Palenzuela et al., 2009) with dynamo action (Bucciantini and Del Zanna, 2013):

\[e^\mu = \eta j^\mu + \xi b^\mu \quad \text{with} \quad \xi \equiv -\alpha_{\text{dyn}} \]

\[\Gamma[E + v \times B - (E \cdot v)v] = \eta(J - qv) + \xi \Gamma[B - v \times E - (B \cdot v)v] \]

Classical limit \((\Gamma = 1, |v| \ll 1, |E| \ll |B|)\):

\[E + v \times B = \eta J + \xi B \]
Evolution equation for E

Computing J from Ohm’s law and replacing in Ampere’s law we get:

$$\gamma^{-1/2} \partial_t \left(\gamma^{1/2} E \right) = \nabla \times (\alpha B - \beta \times E) + (\alpha v - \beta) q + \frac{1}{\eta} R(E, B, v, \xi)$$

Stiff equation \Rightarrow numerical instability

Terms $\propto \eta^{-1}$ can evolve on time scales $\tau_\eta \ll \tau_h$ (time scale of hyperbolic part).

Implementation of IMEX Schemes (Pareschi and Russo, 2005).
Kinematic Dynamo in Magnetized Disks (Bugli et al., 2014)
Magnetized Thick Disks (Komissarov, 2006)

Momentum-Energy tensor for a magnetized plasma:

\[T^{\mu\nu} = (w + b^2)u^\mu u^\nu + \left(p + \frac{b^2}{2}\right)g^{\mu\nu} - b^\mu b^\nu \]

Angular momentum and angular velocity:

\[l = -\frac{u_\phi}{u_t}, \quad \Omega = \frac{u_\phi}{u_t}, \]

Momentum-Energy conservation:

\[W - W_{\text{in}} + \frac{\kappa}{\kappa - 1} \frac{p}{w} + \frac{\zeta}{\zeta - 1} \frac{p_m}{w} = 0 \]

\[W = \ln |u_t| + \int_1^{l_\infty} \frac{\Omega dl}{1 - \Omega l} \]
The $\alpha\Omega$ dynamo: toroidal component
The $\alpha\Omega$ dynamo: poloidal components

\begin{align*}
\text{Time } [P] &= 0, \\
B_r(x,z) \\
\text{Time } [P] &= 0, \\
B_\theta(x,z)
\end{align*}
Growth rate and ratio B_P/B_T

Magnetic Field Exponential Growth

- **B_T**
- **B_P**

Ratio between B_P and B_T

- $\max(B_P)/\max(B_T)$

![Graph showing magnetic field exponential growth and ratio between B_P and B_T.](image)
Butterfly Diagram

Time \([P_c] = 26\).

\[B_\phi (x, z) \]

Model 1

Time \([P_c] \)

\([-2 \times 10^4, -1 \times 10^4, 0, 1 \times 10^4]\)
Other models

\[B_\phi(x, z) \]

Time [Pc] = 0.

Model 10

\[s \in [r_*] \]

\[z \in [r_*] \]

\[x \in [r_*] \]
Current developments and perspectives
3D thick disk models

- Constant-\(l\) tori are most susceptible to develop Papaloizou-Pringle instability (PPI) (De Villiers and Hawley, 2002; Mewes et al., 2015).

- Adding a magnetic field affects the growth of the instability, mainly due to the action of the MRI.
- **Magnetic resistivity** may therefore play a significant role in the development of global modes.

The \(m = 1\) is the fastest growing mode \(\Rightarrow\) need for the whole azimuthal range \([0, 2\pi]\) \(\Rightarrow\) computationally expensive.

- Multidimensional **MPI** domain-decomposition.
- Parallel I/O via **Hdf5-MPI** standard.
Relativistic *ideal* tearing mode

- Magnetic reconnection \Rightarrow conversion from magnetic to kinetic energy, particle acceleration in magnetically dominated systems.
- Sweet-Parker model and tearing instability provide reconnection rates too slow to explain the astrophysical observations.

Ideal tearing mode (Pucci and Velli, 2014)

Critical threshold in the current sheet aspect ratio $a/L \sim S^{-1/3}$, beyond which tearing modes evolve on fast macroscopic time-scales.

Numerical results

- Analysis well verified in 2D resistive MHD simulations (Landi et al., 2015).
- To be extended to the resistive RMHD regime.
Conclusions

Covariant mean-field dynamo closure

Covariant Ohm’s law for a resistive plasma with mean-field dynamo action, to include small-scale turbulent behavior and go beyond the MHD approximation.

Current applications

- Kinematic axissymmetric $\alpha \Omega$ dynamo action in thick disks.
- Stability of 3D magnetized tori in resistive GRMHD.
- Relativistic ideal tearing mode.

Future Perspectives

- α-quenching prescription: beyond the linear phase to estimate the disk back-reaction on the magnetic field (Brandenburg and Subramanian, 2005).
- Spatial profiles for η and ξ: more realistic connections to shearing box simulations. (Gressel, 2010)
Merci pour votre attention!

References II

