Cosmic ray positrons and antiprotons: implications for Dark Matter

Mathieu Boudaud

LAPTh - Annecy, France

28th Texas Symposium on Relativstic Astrophysics

Geneva, Switzerland

December 16 2015

Based on:

A&A 575 (2015) A67 JCAP 1505 (2015) 013 JCAP 1509 (2015) 023

1 Propagation of cosmic rays in the Galaxy

2 Cosmic ray positrons

3 Cosmic ray antiprotons

4 Prospects and ongoing works

ħ

Propagation of cosmic rays in the Galaxy

$$1 < L < 15 \text{ kpc}$$
$$K(E) = K_0 \beta \left(\frac{R}{R_0}\right)^{\delta}$$
$$\vec{V}_c = V_c \ sign(z)\vec{e}_z$$
$$K_{EE}(E) = \frac{2}{9}V_a^2 \frac{E^2\beta^2}{K(E)}$$

Cosmic rays transport equation

 $\partial_t \psi - K(E) \nabla^2 \psi + \partial_z \left[V_c \, sign(z) \psi \right] + \partial_E \left[b(E, \vec{x}) \psi - K_{EE}(E, \vec{x}) \partial_E \psi \right] = Q(E, t, \vec{x})$

$$Q(E,t,\vec{x}) = Q^{source}(E,t,\vec{x}) - Q^{sink}(E,\vec{x})$$

$$1 < L < 15 \text{ kpc}$$
$$K(E) = K_0 \beta \left(\frac{R}{R_0}\right)^{\delta}$$
$$\vec{V_c} = V_c \ sign(z)\vec{e_z}$$
$$K_{EE}(E) = \frac{2}{9}V_a^2 \frac{E^2\beta^2}{K(E)}$$

Cosmic rays transport equation

 $\partial_t \psi - K(E) \nabla^2 \psi + \partial_z \left[V_c \, sign(z) \psi \right] + \partial_E \left[b(E, \vec{x}) \psi - K_{EE}(E, \vec{x}) \partial_E \psi \right] = Q(E, t, \vec{x})$

$$Q(E,t,\vec{x}) = Q^{source}(E,t,\vec{x}) - Q^{sink}(E,\vec{x})$$

$$1 < L < 15 \text{ kpc}$$
$$K(E) = K_0 \beta \left(\frac{R}{R_0}\right)^{\delta}$$
$$\vec{V}_c = V_c \ sign(z)\vec{e}_z$$
$$K_{EE}(E) = \frac{2}{9}V_a^2 \frac{E^2\beta^2}{K(E)}$$

Cosmic rays transport equation

 $\partial_t \psi - K(E) \nabla^2 \psi + \partial_z \left[V_c \operatorname{sign}(z) \psi \right] + \partial_E \left[b(E, \vec{x}) \psi - K_{EE}(E, \vec{x}) \partial_E \psi \right] = Q(E, t, \vec{x})$

$$Q(E,t,\vec{x}) = Q^{source}(E,t,\vec{x}) - Q^{sink}(E,\vec{x})$$

$$1 < L < 15 \text{ kpc}$$
$$K(E) = K_0 \beta \left(\frac{R}{R_0}\right)^{\delta}$$
$$\vec{V}_c = V_c \ sign(z)\vec{e}_z$$
$$K_{EE}(E) = \frac{2}{9}V_a^2 \frac{E^2\beta^2}{K(E)}$$

Cosmic rays transport equation

 $\partial_t \psi - K(E) \nabla^2 \psi + \partial_z \left[V_c \, sign(z) \psi \right] + \partial_E \left[b(E, \vec{x}) \psi - K_{EE}(E, \vec{x}) \partial_E \psi \right] = Q(E, t, \vec{x})$

$$Q(E, t, \vec{x}) = Q^{source}(E, t, \vec{x}) - Q^{sink}(E, \vec{x})$$

The transport equation can be solved using Bessel expansions or Green functions.

Cosmic ray positrons

Cosmic Ray Alpine Collaboration M.B, S.Caroff, A.Putze, Y.Genolini, S.Aupetit, G.Belanger, C.Goy, V.Poireau, V.Poulin, S.Rosier, P.Salati, L.Tao and M.Vecchi

Based on A&A 575,A67(2015)

AMS-02 Collaboration - PRL 113,121101(2014)

AMS-02 measured the positron fraction (PF) with an unprecendent high accuracy from 0.5 up to 500 GeV.

AMS-02 Collaboration - PRL 113,121101(2014)

AMS-02 measured the positron fraction (PF) with an unprecendent high accuracy from 0.5 up to 500 GeV.

 $PF(E) = \frac{\phi_{e^+}(E)}{\phi_{e^-}(E) + \phi_{e^+}(E)}$

AMS-02 Collaboration - PRL 113,121101(2014)

AMS-02 measured the positron fraction (PF) with an unprecendent high accuracy from 0.5 up to 500 GeV.

$$PF(E) = \frac{\phi_{e^+}(E)}{\phi_{e^-}(E) + \phi_{e^+}(E)}$$

The data confirm the 'positron anomaly'.

Two-zone model and semi-analytic method HE positrons $E_{e^+} \ge 10 \text{GeV}$

$$1 < L < 15 \text{ kpc}$$
$$K(E) = K_0 \beta \left(\frac{R}{R_0}\right)^{\delta}$$

$\rm HE~e^+$ transport equation

$$\partial_t \psi - K(E) \nabla^2 \psi + \partial_E \left[b(E) \psi \right] = Q_{\rm e^+}(E,t,\vec{x})$$

$$Q_{e^+}^{sec}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \phi_i(E_i,\vec{x}) \frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

$$Q_{e^+}^{sec}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \phi_i(E_i,\vec{x}) \frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

$$\mathrm{PF} = \frac{\phi_{e^+}^{\mathrm{th}}}{(\phi_{e^-} + \phi_{e^+})^{\mathrm{exp}}}$$

 $\left(\phi_{e^-}+\phi_{e^+}\right)^{\rm exp}$: AMS-02 data

(PRL 113,221102(2014))

$$Q_{e^+}^{\rm sec}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \phi_i(E_i,\vec{x}) \frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

$$\mathrm{PF} = \frac{\phi_{e^+}^{\mathrm{th}}}{(\phi_{e^-} + \phi_{e^+})^{\mathrm{exp}}}$$

 $\mathrm{PF} = \frac{\phi_{e^+}^{\mathrm{th}}}{(\phi_{e^-} + \phi_{e^+})^{\mathrm{exp}}}$

 $(\phi_{e^-} + \phi_{e^+})^{\exp}$: AMS-02 data (PRL 113,221102(2014))

$$Q_{e^+}^{\rm sec}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \phi_i(E_i,\vec{x}) \frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

This is the positron anomaly !

$$Q_{\rm e^+}^{\rm sec}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \phi_i(E_i,\vec{x}) \frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

This is the positron anomaly !

We need another component to explain the data !

Ϳ᠊᠇ᠷ

The Dark Matter scenario

© Addison-Wesley Longman

LAPTh

The DM source term

 $\rho(\vec{x})$: DM density profile

NFW

 $\rho(\vec{x})$: DM density profile

NFW

 $\frac{dN(E)}{dE}$: e⁺ spectrum at source

MicrOMEGAs 3.6

Тh

Single annihilation channel analysis

$$e.g \qquad \chi\chi \to b\bar{b} \to e^+e^- + \dots$$

Channel	m_{χ} [TeV]	$\langle \sigma v \rangle [\text{cm}^3 \text{ s}^{-1}]$	χ^2	$\chi^2_{\rm dof}$	р
e	0.350 ± 0.004	$(2.31 \pm 0.02) \cdot 10^{-24}$	1489	37.2	0
μ	0.350 ± 0.003	$(3.40 \pm 0.03) \cdot 10^{-24}$	346	8.44	0
τ	0.894 ± 0.040	$(2.25 \pm 0.15) \cdot 10^{-23}$	93.0	2.27	$4.2 \cdot 10^{-6}$
и	31.5 ± 2.9	$(1.43 \pm 0.20) \cdot 10^{-21}$	25.2	0.61	0.97
Ь	27.0 ± 2.2	$(1.00 \pm 0.12) \cdot 10^{-21}$	26.5	0.65	0.95
t	42.5 ± 3.3	$(1.81 \pm 0.21) \cdot 10^{-21}$	29.4	0.72	0.89
Z	14.2 ± 0.9	$(6.02 \pm 0.58) \cdot 10^{-22}$	43.8	1.07	0.31
W	12.2 ± 0.08	$(5.10 \pm 0.48) \cdot 10^{-22}$	41.1	1.00	0.42
H	23.2 ± 1.5	$(8.17 \pm 0.77) \cdot 10^{-22}$	39.1	0.95	0.51
$\phi \rightarrow e$	0.350 ± 0.0008	$(1.56 \pm 0.01) \cdot 10^{-24}$	534	13.0	0
$\phi \rightarrow \mu$	0.590 ± 0.022	$(5.87 \pm 0.36) \cdot 10^{-24}$	175	4.27	0
$\phi \rightarrow \tau$	1.76 ± 0.08	$(4.51 \pm 0.32) \cdot 10^{-23}$	83.5	2.04	$7.7 \cdot 10^{-5}$

Mathieu Boudaud LAPTh - Annecy, France Cosmic ra

$$e.g \qquad \chi\chi \to b\bar{b} \to e^+e^- + \dots$$

Channel	m_{χ} [TeV]	$\langle \sigma v \rangle [\text{cm}^3 \text{ s}^{-1}]$	χ^2	$\chi^2_{\rm dof}$	р
e	0.350 ± 0.004	$(2.31 \pm 0.02) \cdot 10^{-24}$	1489	37.2	0
μ	0.350 ± 0.003	$(3.40 \pm 0.03) \cdot 10^{-24}$	346	8.44	0
τ	0.894 ± 0.040	$(2.25 \pm 0.15) \cdot 10^{-23}$	93.0	2.27	$4.2 \cdot 10^{-6}$
и	31.5 ± 2.9	$(1.43 \pm 0.20) \cdot 10^{-21}$	25.2	0.61	0.97
b	27.0 ± 2.2	$(1.00 \pm 0.12) \cdot 10^{-21}$	26.5	0.65	0.95
t	42.5 ± 3.3	$(1.81 \pm 0.21) \cdot 10^{-21}$	29.4	0.72	0.89
Ζ	14.2 ± 0.9	$(6.02 \pm 0.58) \cdot 10^{-22}$	43.8	1.07	0.31
W	12.2 ± 0.08	$(5.10 \pm 0.48) \cdot 10^{-22}$	41.1	1.00	0.42
H	23.2 ± 1.5	$(8.17 \pm 0.77) \cdot 10^{-22}$	39.1	0.95	0.51
$\phi \rightarrow e$	0.350 ± 0.0008	$(1.56 \pm 0.01) \cdot 10^{-24}$	534	13.0	0
$\phi \rightarrow \mu$	0.590 ± 0.022	$(5.87 \pm 0.36) \cdot 10^{-24}$	175	4.27	0
$\phi \rightarrow \tau$	1.76 ± 0.08	$(4.51 \pm 0.32) \cdot 10^{-23}$	83.5	2.04	$7.7 \cdot 10^{-5}$

• The agreement is excellent for quark, gauge boson and Higgs boson pairs.

Mathieu Boudaud LAPTh - Annecy, France

$$e.g \qquad \chi\chi \to \phi\phi \to 2\tau^+ 2\tau^- \to 2e^+ 2e^- + \dots$$

Channel	m_{χ} [TeV]	$\langle \sigma v \rangle [\text{cm}^3 \text{ s}^{-1}]$	χ^2	$\chi^2_{\rm dof}$	р
e	0.350 ± 0.004	$(2.31 \pm 0.02) \cdot 10^{-24}$	1489	37.2	0
μ	0.350 ± 0.003	$(3.40 \pm 0.03) \cdot 10^{-24}$	346	8.44	0
τ	0.894 ± 0.040	$(2.25 \pm 0.15) \cdot 10^{-23}$	93.0	2.27	$4.2 \cdot 10^{-6}$
и	31.5 ± 2.9	$(1.43 \pm 0.20) \cdot 10^{-21}$	25.2	0.61	0.97
b	27.0 ± 2.2	$(1.00 \pm 0.12) \cdot 10^{-21}$	26.5	0.65	0.95
t	42.5 ± 3.3	$(1.81 \pm 0.21) \cdot 10^{-21}$	29.4	0.72	0.89
Ζ	14.2 ± 0.9	$(6.02 \pm 0.58) \cdot 10^{-22}$	43.8	1.07	0.31
W	12.2 ± 0.08	$(5.10 \pm 0.48) \cdot 10^{-22}$	41.1	1.00	0.42
H	23.2 ± 1.5	$(8.17 \pm 0.77) \cdot 10^{-22}$	39.1	0.95	0.51
$\phi \rightarrow e$	0.350 ± 0.0008	$(1.56 \pm 0.01) \cdot 10^{-24}$	534	13.0	0
$\phi \rightarrow \mu$	0.590 ± 0.022	$(5.87 \pm 0.36) \cdot 10^{-24}$	175	4.27	0
$\phi \to \tau$	1.76 ± 0.08	$(4.51 \pm 0.32) \cdot 10^{-23}$	83.5	2.04	$7.7 \cdot 10^{-5}$

- The agreement is excellent for quark, gauge boson and Higgs boson pairs.
- Individual annihilation channels disfavor leptons as the final state.

Mathieu Boudaud LAPTh - Annecy, France

Mathieu Boudaud LAPTh - Annecy, France

Cosmic ray positrons and antiprotons: implications

Mathieu Boudaud LAPTh - Annecy, France

Cosmic ray positrons and antiprotons: implications

Constraints on dark matter annihilation cross-section $\langle \sigma v \rangle$

- Gamma rays (Fermi/LAT, VERITAS, MAGIC, HESS)
- CMB (WMAP, PLANCK)
- Antiprotons (PAMELA)

FERMI data analysis by A. Lopez *et al.* arXiv:1501.01618v1

L∧j⊃T'n

ħ

Constraints on dark matter annihilation cross-section $\langle \sigma v \rangle$

- Gamma rays (Fermi/LAT, VERITAS, MAGIC, HESS)
- CMB (WMAP, PLANCK)
- Antiprotons (PAMELA)

FERMI data analysis by A. Lopez *et al.* arXiv:1501.01618v1

All best fit $\langle \sigma v \rangle$ values are excluded at 2σ CL !

The pulsar scenario

LAPTh

The PSR source term

$$Q_{\mathrm{e}^+}^{PSR}(E,t,\vec{x}) = \delta(t-t_*)\delta(\vec{x}-\vec{x}_*)Q_0\left(\frac{E}{E_0}\right)^{-\gamma} \exp\left(-\frac{E}{E_C}\right)$$

Total energy released by the pulsar through positrons:

$$\int_{0}^{+\infty} dE E Q_0 \left(\frac{E}{E_0}\right)^{-\gamma} exp\left(-\frac{E}{E_C}\right) = fW_0$$

LAPTh

The PSR source term

$$Q_{\mathrm{e}^+}^{PSR}(E,t,\vec{x}) = \delta(t-t_*)\delta(\vec{x}-\vec{x}_*)Q_0\left(\frac{E}{E_0}\right)^{-\gamma} \exp\left(-\frac{E}{E_C}\right)$$

Total energy released by the pulsar through positrons:

$$\int_{0}^{+\infty} dE E Q_0 \left(\frac{E}{E_0}\right)^{-\gamma} exp\left(-\frac{E}{E_C}\right) = fW_0$$

- Fixed parameter
 - $E_C \simeq 1 \text{TeV}$
The PSR source term

$$Q_{\mathrm{e}^+}^{PSR}(E,t,\vec{x}) = \delta(t-t_*)\delta(\vec{x}-\vec{x}_*)Q_0\left(\frac{E}{E_0}\right)^{-\gamma} \exp\left(-\frac{E}{E_C}\right)$$

Total energy released by the pulsar through positrons:

$$\int_{0}^{+\infty} dE E Q_0 \left(\frac{E}{E_0}\right)^{-\gamma} exp\left(-\frac{E}{E_C}\right) = fW_0$$

- Fixed parameter
 - $E_C \simeq 1 \text{TeV}$
- Free parameters
 - $1.5 < \gamma < 2.5$
 - $fW_0 < 10^{54} \text{GeV}$

Mathieu Boudaud LAPTh - Annecy, France Cosmic ray positrons and antiprotons: implications

Observed PSR's from the Australian Telescope National Facility catalogue

Observed PSR's from the Australian Telescope National Facility catalogue

Only few young and nearby PSRs contribute to the positron flux for $E \ge 10 \,\text{GeV}$!

LAPTh

Mathieu Boudaud LAPTh - Annecy, France Cosmic ray positrons and antiprotons: implications

Demonstrating that the positron fraction data can be explained by a **unique pulsar** contribution provides with a **valid alternative** to the DM explanation of the positron anomaly.

Demonstrating that the positron fraction data can be explained by a **unique pulsar** contribution provides with a **valid alternative** to the DM explanation of the positron anomaly.

Since there is only an **upper limit** on the **injection normalisation** fW_0 , if the **single pulsar** hypothesis is viable, a **combination of pulsars** is capable of reproducing the experimental data.

The single PSR hypothesis

Can we explain the positron fraction with the contribution of **one single** pulsar?

LAPT ħ

The single PSR hypothesis

Can we explain the positron fraction with the contribution of **one single** pulsar?

YES !

Mathieu Boudaud LAPTh - Annecy, France

Cosmic ray positrons and antiprotons: implications

342

461

443

232

J0633 + 1746

Geminga

J0942-5552

J1001-5507

J1825-0935

26.8 0.65

0.96

0

9902 241 0

49.6 1.21 0.17

332 8.10

21.7 0.53 0.99

61.0 1.49 0.02

7747 189 0

19.8 0.48 0.99

62.4 1.52 0.02

13202 322 0

21.0 0.51 0.99

126 3.07 0

12776 312 0

2.54

 1.56 ± 0.02

 1.68 ± 0.02

 2.29 ± 0.02

 1.48 ± 0.02

 1.69 ± 0.02

2.65

 1.46 ± 0.02

 1.70 ± 0.02

2.46

 1.52 ± 0.02

 1.94 ± 0.02

2.64

Name	Age [kyr]	Distance [kpc]	$fW_0 [10^{54} \text{GeV}]$	γ	χ^2	$\chi^2_{\rm dof}$	p
		0	$(2.95 \pm 0.07) \cdot 10^{-3}$	1.45 ± 0.02	23.4	0.57	0.99
J1745-3040	546	0.20	$(3.03 \pm 0.06) \cdot 10^{-3}$	1.54 ± 0.02	33.6	0.82	0.79

 $(1.48 \pm 0.03) \cdot 10^{-3}$

 $(1.63 \pm 0.02) \cdot 10^{-3}$

 $(1.01 \pm 0.06) \cdot 10^{-2}$

 $(2.28 \pm 0.05) \cdot 10^{-3}$

 $(2.61\pm 0.04)\cdot 10^{-3}$

1

 $(2.13 \pm 0.05) \cdot 10^{-3}$

 $(2.49 \pm 0.03) \cdot 10^{-3}$

 $(0.80 \pm 0.02) \cdot 10^{-3}$

 $(1.45 \pm 0.03) \cdot 10^{-3}$

1.3

0.17

0.25

0.48

0.10

0.30

1.1

0

0.30

1.4

0.1

0.30

The 5 survivor PSR's from the ATNF catalog

Mathieu Boudaud LAPTh - Annecy, France

Cosmic ray positrons and antiprotons: implications

Conclusion

The DM scenario cannot both:

- provide a good fit of AMS-02 PF data.
- avoid the constraints on $\langle \sigma v \rangle$ from Fermi/LAT, HESS, PLANCK and PAMELA $\bar{p}.$

The single PSR scenario provides a valid explanation for AMS-02 PF data for 5 observed PSR's.

Cosmic ray antiprotons

M.B, M.Cirelli, Y.Genolini, G.Giesen, V.Poulin, P.Salati and P.D.Serpico

Based on: JCAP 1505 (2015) 013 JCAP 1509 (2015) 023

 \bar{p} astrophysical background relatively under control compared to other channels $(e^+,\gamma,\ldots).$

- No astrophysical primary component
- Propagation uncertainty is rather small

Preliminary \bar{p}/p ratio from AMS-02

AMS-02 collaboration presented for the first time the measured \bar{p}/p ratio from \sim 1GeV to \sim 500GeV.

Preliminary \bar{p}/p ratio from AMS-02

AMS-02 collaboration presented for the first time the measured \bar{p}/p ratio from $\sim 1 {\rm GeV}$ to $\sim 500 {\rm GeV}.$

AMS-02 has suggested an antiproton excess with respect to the astrophysical background!

Is this the discovery of dark matter?

LAPTh

Is this the discovery of dark matter?

Let's compute the systematic uncertainties for the astrophysical antiprotons background

LAP

$$\begin{cases} p+H \rightarrow \bar{p} + X &\sim 70\%\\ \alpha+H \rightarrow \bar{p} + X &\sim 25\%\\ p+He \rightarrow \bar{p} + X &\sim 4\%\\ \alpha+He \rightarrow \bar{p} + X &\sim 1\% \end{cases}$$

$$Q_{\bar{p}}^{sec}(E, \mathbf{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} \int_{E_i^0}^{+\infty} dE_i \frac{d\sigma_{ij\to\bar{p}X}}{dE} (E_i \to E) \phi_i(E_i, \mathbf{x}) n_j(\mathbf{x})$$

$$\begin{cases} p+H \rightarrow \bar{p}+X &\sim 70\%\\ \alpha+H \rightarrow \bar{p}+X &\sim 25\%\\ p+He \rightarrow \bar{p}+X &\sim 4\%\\ \alpha+He \rightarrow \bar{p}+X &\sim 1\% \end{cases}$$

$$Q_{\bar{p}}^{sec}(E, \mathbf{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} \int_{E_i^0}^{+\infty} dE_i \frac{d\sigma_{ij \to \bar{p}X}}{dE} (E_i \to E) \phi_i(E_i, \mathbf{x}) n_j(\mathbf{x})$$

• Primary CR sources

 \rightarrow Supernova and pulsar distribution (Yusifov et al. 2004)

$$\left\{ \begin{array}{ll} p+H\rightarrow\bar{p}+X &\sim 70\%\\ \alpha+H\rightarrow\bar{p}+X &\sim 25\%\\ p+He\rightarrow\bar{p}+X &\sim 4\%\\ \alpha+He\rightarrow\bar{p}+X &\sim 1\% \end{array} \right.$$

$$Q_{\bar{p}}^{sec}(E, \mathbf{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} \int_{E_i^0}^{+\infty} dE_i \frac{d\sigma_{ij \to \bar{p}X}}{dE} (E_i \to E) \phi_i(E_i, \mathbf{x}) n_j(\mathbf{x})$$

• Primary CR sources

 \rightarrow Supernova and pulsar distribution (Yusifov et al. 2004)

• $\Phi_p^{\oplus}(E), \Phi_{\alpha}^{\oplus}(E)$ \rightarrow AMS-02 preliminary data (AMS days 2015)

$$\left\{ \begin{array}{ll} p+H\rightarrow\bar{p}+X &\sim 70\%\\ \alpha+H\rightarrow\bar{p}+X &\sim 25\%\\ p+He\rightarrow\bar{p}+X &\sim 4\%\\ \alpha+He\rightarrow\bar{p}+X &\sim 1\% \end{array} \right.$$

$$Q_{\bar{p}}^{sec}(E, \mathbf{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} \int_{E_i^0}^{+\infty} dE_i \frac{d\sigma_{ij \to \bar{p}X}}{dE} (E_i \to E) \phi_i(E_i, \mathbf{x}) n_j(\mathbf{x})$$

- Primary CR sources
 → Supernova and pulsar distribution (Yusifov et al. 2004)
- $\Phi_p^{\oplus}(E), \Phi_{\alpha}^{\oplus}(E)$ \rightarrow AMS-02 preliminary data (AMS days 2015)
- $\sigma_{pH \to \bar{p}X} \to NA49$ data parameterization/extrapolation (*Di Mauro et al. 2014*)

Primary flux slope parametrization uncertainties

AMS-02 p and α fluxes presented during the AMS days.

$$\Phi(R) \sim R^{\gamma} \left[1 + \left(\frac{R}{R_0}\right)^{\Delta \gamma} \right]$$

L∧j⊃T'n

Primary flux slope parametrization uncertainties

AMS-02 p and α fluxes presented during the AMS days.

$$\Phi(R) \sim R^{\gamma} \left[1 + \left(\frac{R}{R_0}\right)^{\Delta \gamma} \right]$$

L∧j⊃T'n

$$\Phi(R) \sim R^{\gamma} \left[1 + \left(\frac{R}{R_0}\right)^{\Delta \gamma} \right]$$

Production X-sections uncertainties

Production X-sections uncertainties

- NA49 data parametrization/extrapolation procedure
- Isospin asymmetry : $\sigma_{pH\to\bar{n}X} \sim [1, 1.5] \times \sigma_{pH\to\bar{p}X}$

Di Mauro et al. (2014)

Production X-sections uncertainties

- NA49 data parametrization/extrapolation procedure
- Isospin asymmetry : $\sigma_{pH \to \bar{n}X} \sim [1, 1.5] \times \sigma_{pH \to \bar{p}X}$

Di Mauro et al. (2014)

Propagation uncertainties

5 parameters constrained using the B/C.

Maurin et al. (2001) Donato et al. (2003)

Case	δ	$K_0 [\mathrm{kpc}^2/\mathrm{Myr}]$	L [kpc]	<i>V_C</i> [km/s]	V_a [km/s]
MIN	0.85	0.0016	1	13.5	22.4
MED	0.70	0.0112	4	12	52.9
MAX	0.46	0.0765	15	5	117.6

Propagation uncertainties

5 parameters constrained using the B/C.

Maurin et al. (2001) Donato et al. (2003)

Case	δ	$K_0 [\mathrm{kpc}^2/\mathrm{Myr}]$	<i>L</i> [kpc]	V_C [km/s]	V_a [km/s]
MIN	0.85	0.0016	1	13.5	22.4
MED	0.70	0.0112	4	12	52.9
MAX	0.46	0.0765	15	5	117.6

Mathieu Boudaud LAPTh - Annecy, France Cosmic ray positrons and antiprotons: implications

Solar modulation uncertainties

Force Field Approximation : $\varphi_F^{\bar p} = [0.3, 1.0] \; {\rm GV} \simeq \varphi_F^p \pm 50\%$

Cirelli et al. (2014)

Solar modulation uncertainties

Force Field Approximation : $\varphi_F^{\bar{p}} = [0.3, 1.0] \text{ GV} \simeq \varphi_F^p \pm 50\%$

Cirelli et al. (2014)

1 5 10 50 Kinetic energy T [GeV]

Astrophysical background uncertainties

Astrophysical background uncertainties

AMS-02 data are consistent with the astrophysical background.

∟∧়≏тհ

AMS-02 data are consistent with the astrophysical background.

Similar conclusion from independent analysis:

Kappl, Reinert and Winkler, arXiv:1506.04145

Mathieu Boudaud LAPTh - Annecy, France Cosmic ray positrons and antiprotons: implications

Updated dark matter constraints

Updated dark matter constraints

L∧়⊐Th

Conclusion

• There is no clear antiproton excess.

- Stronger bounds on DM annihilation X-section or decay life-time.
- Data seem to prefer a relatively mild energy dependence of the diffusion coefficient at high energies (such as MAX model).

New cosmic ray positron analysis with:

New cosmic ray positron analysis with:

• AMS-02 positron flux PRL 113.121102(2015)

LAT

New cosmic ray positron analysis with:

- AMS-02 positron flux PRL 113.121102(2015)
- AMS-02 proton flux PRL 114.171103(2015)
- AMS-02 helium flux PRL 114.171103(2015)

New cosmic ray positron analysis with:

- AMS-02 positron flux PRL 113.121102(2015)
- AMS-02 proton flux PRL 114.171103(2015)
- AMS-02 helium flux PRL 114.171103(2015)

Single annihilation channel analysis

$$e.g \qquad \chi\chi \to b\bar{b} \to e^+e^- + \dots$$

Channel	$m_{\chi} [\text{TeV}]$	$\langle \sigma v \rangle [\mathrm{cm}^3 \mathrm{s}^{-1}]$	χ^2	$\chi^2_{ m dof}$	p
е	0.500(limit)	$(3.39 \pm 0.04) \cdot 10^{-24}$	4560	95.0	0
μ	0.500(limit)	$(5.84 \pm 0.06) \cdot 10^{-24}$	2356	50	0
τ	0.500 (limit)	$(1.07 \pm 0.09) \cdot 10^{-23}$	573	12.0	$5.1 \cdot 10^{-91}$
u	4.20 ± 0.26	$(1.14 \pm 0.08) \cdot 10^{-22}$	166	3.45	$6.6\cdot10^{-15}$
b	4.47 ± 0.30	$(1.05 \pm 0.08) \cdot 10^{-22}$	199	4.14	$2.7\cdot 10^{-20}$
t	6.14 ± 0.44	$(1.63 \pm 0.12) \cdot 10^{-22}$	159	3.31	$8.2\cdot10^{-14}$
Z	2.58 ± 0.15	$(7.35 \pm 0.48) \cdot 10^{-23}$	162	3.37	$2.8\cdot10^{-14}$
W	1.58 ± 0.26	$(4.25 \pm 0.75) \cdot 10^{-23}$	114	2.37	$2.7\cdot 10^{-6}$

Mathieu Boudaud LAPTh - Annecy, France Cosmic ray positrons and antiprotons: implications

New cosmic ray positron analysis with:

- AMS-02 positron flux PRL 113.121102(2015)
- AMS-02 proton flux PRL 114.171103(2015)
- AMS-02 helium flux PRL 114.171103(2015)

Single annihilation channel analysis

$$e.g \qquad \chi\chi \to b\bar{b} \to e^+e^- + \dots$$

Channel	m_{χ} [TeV]	$\langle \sigma v \rangle [\mathrm{cm}^3 \mathrm{s}^{-1}]$	χ^2	$\chi^2_{ m dof}$	p
e	0.500 (limit)	$(3.39 \pm 0.04) \cdot 10^{-24}$	4560	95.0	0
μ	0.500 (limit)	$(5.84 \pm 0.06) \cdot 10^{-24}$	2356	50	0
τ	0.500 (limit)	$(1.07 \pm 0.09) \cdot 10^{-23}$	573	12.0	$5.1 \cdot 10^{-91}$
u	4.20 ± 0.26	$(1.14 \pm 0.08) \cdot 10^{-22}$	166	3.45	$6.6\cdot10^{-15}$
b	4.47 ± 0.30	$(1.05 \pm 0.08) \cdot 10^{-22}$	199	4.14	$2.7\cdot 10^{-20}$
t	6.14 ± 0.44	$(1.63 \pm 0.12) \cdot 10^{-22}$	159	3.31	$8.2\cdot10^{-14}$
	2.58 ± 0.15	$(7.35 \pm 0.48) \cdot 10^{-23}$	162	3.37	$2.8\cdot 10^{-14}$
W	1.58 ± 0.26	$(4.25 \pm 0.75) \cdot 10^{-23}$	114	2.37	$2.7\cdot10^{-6}$

All single annihilation channel explanations are excluded!

Thanks for your attention!

LAPTh

Backup

∟∧҉⊃тћ