# Accurate Phenomenological Waveform Models for BH Coalescence in the Frequency Domain

Goal: synthesize inspiral-merger-ringdown models of the complete WF of Compact Binary Coalescence from <u>pN, NR, BH perturbation theory</u>, self-force, ...



S. Husa, Universitat de les Illes Balears 28th Texas Symposium, 12/2015

# Accurate Phenomenological Waveform Models for BH Coalescence in the Frequency Domain

Goal: synthesize inspiral-merger-ringdown models of the complete WF of Compact Binary Coalescence from <u>pN, NR, BH perturbation theory</u>, self-force, ...



S. Husa, Universitat de les Illes Balears 28th Texas Symposium, 12/2015

# Accurate Phenomenological Waveform Models for BH Coalescence in the Frequency Domain

Goal: synthesize inspiral-merger-ringdown models of the complete WF of Compact Binary Coalescence from <u>pN, NR, BH perturbation theory</u>, self-force, ...



Frequency-domain gravitational waves from non-precessing black-hole binaries -

- I. New numerical waveforms and anatomy of the signal
- II. A phenomenological model for the advanced detector era

arXiv:1508.07250, SH, S Khan, M Hannam, M Pürrer, F Ohme, X Jiménez Forteza, A Bohé

arXiv:1508.07253, S Khan, SH, M Hannam, F Ohme, M Pürrer, X Jiménez Forteza, A Bohé

New work with X Jiménez Forteza & D Keitel

S. Husa, Universitat de les Illes Balears 28th Texas Symposium, 12/2015

## Motivation

 Optimal analysis of data from GW detectors relies on matched filtering with accurate template waveforms.

$$\langle h_1, h_2 \rangle = \max_{\phi_0, t_0} 4 \Re \int_{f_1}^{f_2} \frac{h_1(f) h_2^*(f)}{S_n(f)} df$$
  
SNR:  $\rho = ||h|| \qquad \mathcal{M} = 1 - \langle h_1, h_2 \rangle / (||h_1|| ||h_2||)$ 

- 2005 breakthrough in NR: Pretorius, NASA Goddard/Brownsville
  - short time scale to explore consequences for GW data analysis
- Applications of waveforms:
  - Injections
  - Searches + Bayesian parameter estimation

# Motivation

• Optimal analysis of data from GW detectors relies on matched filtering with accurate template waveforms.



- 2005 breakthrough in NR: Pretorius, NASA Goddard/Brownsville
  - short time scale to explore consequences for GW data analysis
- Applications of waveforms:
  - Injections
  - Searches + Bayesian parameter estimation

## Phenomenological modelling of IMR waveforms

- Key "design" ideas [alternative choices: Effective One Body ]
  - "phenomenological": minimal assumptions look at waveforms and describe what we see. [EOB-model]
  - Frequency domain: matched filter calculations in Freq. domain [time domain]
  - Explicit expression in terms of elementary functions -> fast, simple [ODEs + optional ROM acceleration]
- Minimal ingredients:
  - PN approximate to describe low frequencies: uncalibrated EOB
  - Set of NR WFs: SXS + BAM
  - Prediction for BH remnant: New fits for final mass & spin -> QNM freq.

## Phenomenological modelling of IMR waveforms

- Key "design" ideas [alternative choices: Effective One Body ]
  - "phenomenological": minimal assumptions look at waveforms and describe what we see. [EOB-model]
  - Frequency domain: matched filter calculations in Freq. domain [time domain]
  - Explicit expression in terms of elementary functions -> fast, simple [ODEs + optional ROM acceleration]

# Talk about I=|m|=2 mode only!

- Minimal ingredients:
  - PN approximate to describe low frequencies: uncalibrated EOB
  - Set of NR WFs: SXS + BAM
  - Prediction for BH remnant: New fits for final mass & spin -> QNM freq.

### New NR Waveforms: $m_1/m_2 = 4, 8, 18$

RMS residual convergence test

• BAM code: "moving puncture" finite difference mesh refinement







convergence order



FIG. 3: Mismatch errors due to finite-radius waveform extraction for the 120-point simulations of the same q = 4 case as in Fig. 2. Mismatches are between the  $R_{ex} = 100 M$ waveform and those extracted at  $R_{ex} = \{50, 60, 70, 80, 90\} M$ (from top to bottom).



FIG. 2: Mismatch error due to numerical resolution, for the q = 4,  $\chi_1 = \chi_2 = \hat{\chi} = 0.75$  (black lines) and non-spinning q = 18 simulations (orange lines). The solid black line shows the mismatch between waveform q = 4 112- and 96-point simuations, and the dashed black line shows the mismatch between the 96- and 80-point simulations. For the q = 18 configuration, the solid orange line shows the mismatch between the 144- and 120-point simulations, and the dashed orange line shows the mismatch between the shows the mismatch between the 144- and 120-point simulations, and the dashed orange line shows the mismatch between the 144- and 120-point simulations (see text).

#### NR Waveforms: SXS catalogue + new BAM WFs

• BAM code: "moving puncture" finite difference mesh refinement, BSSN formulation of Einstein Equations

![](_page_10_Figure_2.jpeg)

#### Choice of inspiral approximate: uncalibrated SEOB

 Compare PN approximants in hybridization procedure -> decide for uncalibrated SEOBNRv2.

![](_page_11_Figure_2.jpeg)

#### Hybrid waveforms: corner cases

![](_page_12_Figure_1.jpeg)

### Final state

- Kerr BH perturbation theory -> complex frequencies of spheroidal harmonic QNMs, functions of final mass & final spin.
- Amplitudes and relative phases of different harmonics computed in NR.
- SXS, RIT + BAM q≤18 data => Effective spin fits for final spin & radiated energy (final mass)

$$\hat{S} = \frac{m_1^2 \chi_1 + m_2^2 \chi_2}{m_1^2 + m_2^2}$$

- Hierarchical fitting approach by subspaces:
- no spin / equal mass / full

![](_page_13_Figure_7.jpeg)

### Final state

- Kerr BH perturbation theory -> complex frequencies of spheroidal harmonic QNMs, functions of final mass & final spin.
- Amplitudes and relative phases of different harmonics computed in NR.
- SXS, RIT + BAM q≤18 data => Effective spin fits for final spin & radiated energy (final mass)

$$\hat{S} = \frac{m_1^2 \chi_1 + m_2^2 \chi_2}{m_1^2 + m_2^2}$$

- Hierarchical fitting approach by subspaces:
- no spin / equal mass / full

#### Need more high spin data points

![](_page_14_Figure_8.jpeg)

#### Update on final state results: unequal spins

- Final spin extension to unequal spins:  $a_f = a_f^{Eq} + f(\eta)(\chi_1 \chi_2)$
- Guess ansatz for  $f(\eta)$  from inspecting data:
  - At fixed  $\eta$ , difference with equal spin fit well approximated by plane -> determine coefficients, plot in 1D.

![](_page_15_Figure_4.jpeg)

similar for radiated energy.

## Update on final state results: precession

- Based on PhenomP approximation:
  - emission in comoving frame = "no precession"
  - preserve total spin projections unto  $\parallel$  &  $\perp$  L
  - => radiated energy should depend only weakly on precession.
- Final spin:

$$|a_{fin}| = \sqrt{S_{\perp}^2 \frac{\lambda}{M_{fin}^2}^2 + a_{fin}^{||}^2}$$

choose "fudge parameter"

$$\lambda = M_{fin}^2$$

• as in 2007 AEI fit [Rezzolla+,PRD78,2008]

![](_page_16_Picture_10.jpeg)

![](_page_16_Figure_11.jpeg)

# Splitting into amplitude/phase & frequency regions

#### Divide and conquer:

- Split waveform into amplitude and phase, model simple non-oscillatory functions.
- Simplicity of modelling increases with the number of frequency-regions.
- Simplest: tens of points, cubic spline.
- Our choice 3 regions:
  - inspiral (use PN intuition)
  - merger-ringdown (use QNM intuition)
  - intermediate

![](_page_17_Figure_9.jpeg)

### Amplitude inspiral model

 $Mf \le 0.018: h_{\text{insp}} = PN + \alpha f^{7/3} + \beta f^{8/3} + \gamma f^3$ 

![](_page_18_Figure_2.jpeg)

- For each WF fit for  $\ lpha,eta,\gamma$
- PN terms have alternate signs, converge slowly
   -> represent curve by 3 equispaced data points
- Parameterize  $(\eta, \chi_{eff})$  parameter space and interpolate with polynomial.

P. Ajith, Phys. Rev. D 84,

084037 (2011)

$$\eta = \frac{m1m2}{(m1+m2)^2}, \quad \chi_{eff} = \frac{m_1\chi_1 + m_2\chi_2}{m_1 + m_2} - \frac{76}{113}\frac{1}{2}(\chi_1 + \chi_2)\eta$$

#### Amplitude inspiral model

![](_page_19_Figure_1.jpeg)

- PN terms have alternate signs, converge slowly
   -> represent curve by 3 equispaced data points
   P. Ajith, Phys. Rev. D 84, 084037 (2011)
- Parameterize  $(\eta, \chi_{eff})$  parameter space and interpolate with polynomial.

$$\eta = \frac{m1m2}{(m1+m2)^2}, \quad \chi_{eff} = \frac{m_1\chi_1 + m_2\chi_2}{m_1 + m_2} - \frac{76}{113}\frac{1}{2}(\chi_1 + \chi_2)\eta$$

#### Complete amplitude model

- Deal with smooth functions -> high frequency falloff faster than polynomial.
- Previous Phenom ringdown based on Lorentzian, now multiply with exponential.

$$h_{\rm RD} = \frac{a \, e^{-\lambda (f - f_{\rm ring})}}{(f - f_{\rm ring})^2 + \sigma^2}$$

 0.018 < f < (local maximum of ringdown): rational function connected C<sup>1</sup> to inspiral and ringdown with 1(2) further parameters, or polynomial.

![](_page_20_Figure_5.jpeg)

#### Complete amplitude model

- Deal with smooth functions -> high frequency falloff faster than polynomial.
- Previous Phenom ringdown based on Lorentzian, now multiply with exponential.

$$h_{\rm RD} = \frac{a \, e^{-\lambda (f - f_{\rm ring})}}{(f - f_{\rm ring})^2 + \sigma^2}$$

 0.018 < f < (local maximum of ringdown): rational function connected C<sup>1</sup> to inspiral and ringdown with 1(2) further parameters, or polynomial.

#### Complete amplitude model

- Deal with smooth functions -> high frequency falloff faster than polynomial.
- Previous Phenom ringdown based on Lorentzian, now multiply with exponential.

$$h_{\rm RD} = \frac{a \, e^{-\lambda (f - f_{\rm ring})}}{(f - f_{\rm ring})^2 + \sigma^2}$$

 0.018 < f < (local maximum of ringdown): rational function connected C<sup>1</sup> to inspiral and ringdown with 1(2) further parameters, or polynomial.

![](_page_22_Figure_5.jpeg)

FIG. 10: The same quantities as in Fig. 9, but now for three q = 18 configurations,  $\chi_1 = 0.4, \chi_2 = 0, \chi_1 = \chi_2 = 0$  and  $\chi_1 = -0.8, \chi_2 = 0$ .

#### Modelling the Fourier domain phase

• Bad news: Freedom in initial phase & time shift:  $\Phi(f) \rightarrow \Phi(f) + \Phi_0 + 2\pi t$ 

![](_page_23_Figure_2.jpeg)

#### Modelling the Fourier domain phase

• Bad news: Freedom in initial phase & time shift:  $\Phi(f) \rightarrow \Phi(f) + \Phi_0 + 2\pi t$ 

![](_page_24_Figure_2.jpeg)

#### Modelling the Fourier domain phase

• Bad news: Freedom in initial phase & time shift:  $\Phi(f) \rightarrow \Phi(f) + \Phi_0 + 2\pi t$ 

![](_page_25_Figure_2.jpeg)

#### Phase model

- Inspiral: as for amplitude, PN + 3 higher order terms +  $\Phi_0$
- Ringdown:  $\Phi'_{MR} = \alpha_1 + \alpha_2 f^{-2} + \alpha_3 f^{-1/4} + \frac{\alpha_4 f_{damp}}{f_{damp}^2 + (f \alpha_5 f_{RD})^2}$
- Intermediate:  $\Phi'_{\text{Int}} = \beta_1 + \beta_2 f^{-1} + \beta_3 f^{-4}$

Phase & residuals example: intermediate freq.

#### Phase model

- Inspiral: as for amplitude, PN + 3 higher order terms +  $\Phi_0$
- Ringdown:  $\Phi'_{MR} = \alpha_1 + \alpha_2 f^{-2} + \alpha_3 f^{-1/4} + \frac{\alpha_4 f_{damp}}{f_{damp}^2 + (f \alpha_5 f_{RD})^2}$
- Intermediate:  $\Phi'_{\text{Int}} = \beta_1 + \beta_2 f^{-1} + \beta_3 f^{-4}$

Phase & residuals example: intermediate freq.

![](_page_27_Figure_5.jpeg)

#### Phase coefficients as functions of $\eta, \hat{\chi}$

![](_page_28_Figure_1.jpeg)

FIG. 12: Phase coefficients for region I and II. The calibration points and the model, extrapolated to the boundary of the physical parameter space are shown.

#### PhenomD mismatches against all 48 hybrids

early aLIGO noise curve, low freq. cutoff @ 30 Hz

![](_page_29_Figure_2.jpeg)

#### Mismatches between models: SEOBNRv2 vs PenD

![](_page_30_Figure_1.jpeg)

FIG. 18: Mismatch comparisons between the SEOBNRv2\_ROM model, and three versions of PhenomD. Left: the final PhenomD model. Middle: SEOBNRv2\_ROM is used for the inspiral part of PhenomD, i.e., up to Mf = 0.018. Right: TaylorF2 is used for the inspiral part of PhenomD. See text for discussion.

#### Matches (Faithfulness) vs. hybrids & between models

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_31_Figure_4.jpeg)

![](_page_31_Figure_5.jpeg)

![](_page_31_Figure_6.jpeg)

![](_page_31_Figure_7.jpeg)

![](_page_31_Figure_8.jpeg)

![](_page_31_Figure_9.jpeg)

#### Time domain waveforms

![](_page_32_Figure_1.jpeg)

FIG. 21: Time-domain representation of the PhenomD model outside its calibration region, here for mass ratio 50 and spin parameters of  $\chi_1 = \chi_2 = 0.99$ .

#### Summary

- PhenomD: very accurate WFs in time & frequency domain.
  - Open source C implementation (LAL); Mathematica on request.
  - Builds upon EOB inspiral description & detailed study of WF anatomy.
- Phenom\* & SEOBNR agree extremely well in their calibration regions.
  - Need more NR simulations for large spins || orbital ang. momentum.
- PhenomD is modular, e.g. inspiral and MRD can be tuned from different waveform sets, variations of Phen\* models easy to generate.
  - Application to precession -> Mark's talk
  - Similar modifications may be possible for modGR, eccentricity ...