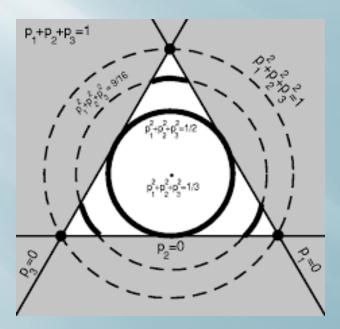
SOLVING THE EINSTEIN-MAXWELL EQUATIONS FOR THE PROPAGATION OF ELECTROMAGNETIC RADIATION DURING EARLY UNIVERSE KASNER-LIKE EPOCHS

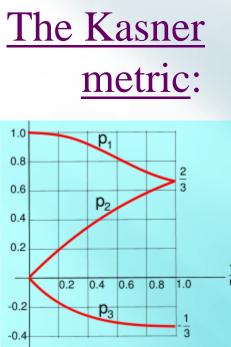


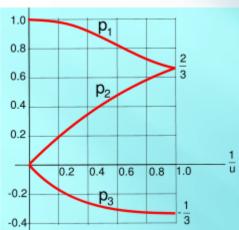
Brett Bochner

Hofstra University, NY, USA

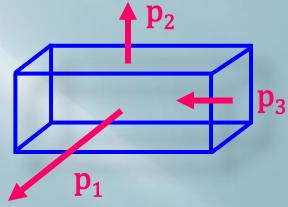
<u>A Cosmological Truism</u> (which *might actually* be true!) :

- Before the universe was Homogeneous & Isotropic, it was *Inhomogeneous* and *Anisotropic*! (HOW DID THE BIG BANG HAPPEN, ANYWAY?)
- The focus of many cosmological studies is to *get rid of* the <u>pre-Homogenized</u> epoch as soon as possible (*we've gotten very good at this*)
- But given that the "initial" distribution of matter & energy is a great source of (aesthetic? philosophical? fine-tuning?) consternation, it is an interesting problem to study the propagation of relativistic mass-energy (e.g., light), during this Very-Early-Universe epoch
- A useful & well-known model of the anisotropic early universe is the *Mixmaster model*, consisting largely of a varied series of Homogeneous-but-Anisotropically-Expanding "<u>Kasner</u>" Epochs
- Previous Kasner energy prop. studies often focused on approximations (light *ray* propagation, series expansions, neglected driving terms) or limited special cases (e.g., Kasner coefficients {2/3, 2/3, -1/3})





 $ds^{2} = -dt^{2} + (t^{2p_{1}})dx^{2} + (t^{2p_{2}})dy^{2} + (t^{2p_{3}})dz^{2}$ With: $p_1 + p_2 + p_3 = p_1^2 + p_2^2 + p_3^2 = 1$, (... for vacuum background: $T^{\mu\nu} = 0$), And with: $p_1 > p_2 \ge p_3$, $\rightarrow p_3 \le 0$ (*contraction*)



- But, there is *no particular reason* why we "must" enforce the Kasner conditions! Non-vacuum metrics (e.g., FRW) are perfectly acceptable (whether or not mass-energy influences the cosmological evolution), as long as reasonable Energy Conditions are satisfied.
- We will thus consider general $\{p_x, p_y, p_z\}$, without prior restrictions.

Electromagnetism in Curved Spacetime:

 $\underline{\text{Einstein-Maxwell eqn's:}}_{(charge/current-free volumes)} \begin{array}{l} \partial_{\gamma}F_{\alpha\beta} + \partial_{\beta}F_{\gamma\alpha} + \partial_{\alpha}F_{\beta\gamma} = 0 \\ \partial_{\alpha}\{\sqrt{-\text{Det}[g_{\mu\nu}]} F^{\alpha\beta}\} = 0 \end{array}$

With E&B-Fields seen by Kasner (*Rest*-)Observer w/4-Velocity U^{β} : $E_{\alpha}^{\ \ Obs} = F_{\alpha\beta} \ U^{\beta}$, $B_{\alpha}^{\ \ Obs} = -\frac{1}{2} \epsilon_{\alpha\beta}^{\ \gamma\delta} F_{\gamma\delta} \ U^{\beta} \quad \{U^{\beta} = (1,0,0,0)\}$ (where $\epsilon_{\alpha\beta}^{\ \gamma\delta}$ is the Levi-Civita anti-symmetric *tensor*, not *symbol*) Hence (and w/cyclic permutations): $F_{tx} = -\sqrt{-g_{tt}} \ E_x^{\ \ Obs} = -E_x^{\ \ Obs}$, $F_{xy} = \sqrt{g_{xx} \ g_{yy}/g_{zz}} \ B_z^{\ \ Obs} = [t^{(p_x + p_y - p_z)}] \ B_z^{\ \ Obs}$

Also, to simplify the Divergence Eq's, define Re-Scaled Fields thus:

 $E_{z} \equiv (t^{p_{x}+p_{y}-p_{z}}) E_{z}^{Obs}, \qquad (and w/cyclic permutations)$ $B_{z} \equiv (t^{p_{x}+p_{y}-p_{z}}) B_{z}^{Obs} = F_{xy} \qquad over \{x,y,z\})$

<u>Resulting Maxwell Equations</u> for *general* $\{p_x, p_y, p_z\}$: $\vec{\nabla} \cdot \vec{E} = \vec{\nabla} \cdot \vec{B} = 0$ $\partial_t E_z = \{ [t^{(-p_x - p_y + p_z)}] \partial_v B_z \} - \{ [t^{(-p_x + p_y - p_z)}] \partial_z B_y \}$ (\rightarrow with Cyclic Perm. over {x, y, z}, and for { $E_i \rightarrow B_i, B_i \rightarrow -E_i$ }) <u>Recalling the usual trick to get independent 2nd-Order Diff. Eq's. for the 6 Fields:</u> <u>Minkowski</u> (for a *Homogeneous* wave eq'n): $\partial_t \vec{E} = \vec{\nabla} \times \vec{B}$, $\partial_t \vec{B} = -\vec{\nabla} \times \vec{E}$, $\Rightarrow \vec{\nabla} \times \vec{\nabla} \times \vec{E} = \vec{\nabla} \cdot \vec{E} - \nabla^2 \vec{E} = -\vec{\nabla} \times \partial_t \vec{B} = -\partial_t \{\vec{\nabla} \times \vec{B}\} = -\partial_t^2 \vec{E} - \partial_t^2 \vec{E} - \nabla^2 \vec{E} = 0$ BUT, for Kasner case, w/factors of t in the "curl" eq'ns: $\partial_t \{(t^N) \vec{B}\} \neq (t^N) \partial_t \vec{B}$, a *Homogeneous* 2nd-Order wave eq'n is <u>not</u> obtained & we get (w/cyclic perm.): $\partial_t^2 E_x + \left(\frac{p_x}{t}\right) \partial_t E_x - \left\{ (t^{-2p_x}) \partial_x^2 + (t^{-2p_y}) \partial_y^2 + (t^{-2p_z}) \partial_z^2 \right\} E_x$ $= \frac{(p_z - p_y)}{t} \{ [t^{(-p_x - p_y + p_z)}] \partial_y B_z \} + \{ [t^{(-p_x + p_y - p_z)}] \partial_z B_y \},\$...so that the $\{E_i \leftrightarrow B_{i,k}\}$ fields are <u>not uncoupled</u> in the 2nd-Order eq'ns!

Uncoupling the *E*-, *B*-fields via the *Non-Homogeneous* "Driving" terms:

Using the "curl" eq'ns, we may write the 2nd-Order Diff Eq'n for a given field (e.g., E_x) in 3 different ways... (and defining: $\{t\nabla^2\}E_i \equiv \{(t^{-2p_x})\partial_x^2 + (t^{-2p_y})\partial_y^2 + (t^{-2p_z})\partial_z^2\}E_i$):

$$\partial_{t}^{2} E_{x} + \left(\frac{p_{x}}{t}\right) \partial_{t} E_{x} - \left\{t\nabla^{2}\right\} E_{x} = \frac{(p_{z} - p_{y})}{t} \left\{ \left[t^{\left(-p_{x} - p_{y} + p_{z}\right)}\right] \partial_{y} B_{z} \right\} + \left\{ \left[t^{\left(-p_{x} + p_{y} - p_{z}\right)}\right] \partial_{z} B_{y} \right\}$$

$$\partial_{t}^{2} E_{x} + \left[\frac{p_{x} + (p_{z} - p_{y})}{t}\right] \partial_{t} E_{x} - \left\{t\nabla^{2}\right\} E_{x} = 2 \frac{(p_{z} - p_{y})}{t} \left\{ \left[t^{\left(-p_{x} - p_{y} + p_{z}\right)}\right] \partial_{y} B_{z} \right\} \right\}$$

$$\partial_{t}^{2} E_{x} + \left[\frac{p_{x} - (p_{z} - p_{y})}{t}\right] \partial_{t} E_{x} - \left\{t\nabla^{2}\right\} E_{x} = 2 \frac{(p_{z} - p_{y})}{t} \left\{ \left[t^{\left(-p_{x} + p_{y} - p_{z}\right)}\right] \partial_{z} B_{y} \right\}$$

Doing this appropriately for all 6 fields, the 6 { $E_i \leftrightarrow B_{j,k}$ } coupled eq'ns can be broken into 3 sets of { $E_i \leftrightarrow B_j$ } pairwise-coupled eq'ns... e.g., { $E_x \leftrightarrow B_y$ }, { $E_y \leftrightarrow B_z$ }, & { $E_z \leftrightarrow B_x$ };

Then, for all 6 fields $F_i \equiv \{E_i, B_i\}$, w/spatial dependence: cos/sin $(k_x x + k_y y + k_z z)$, $-\{t\nabla^2\}F_i \equiv \left[(t^{-2p_x})k_x^2 + (t^{-2p_y})k_y^2 + (t^{-2p_z})k_z^2\right]F_i$,

and we can thus take extra spatial derivatives, replace w/k's, and plug the pairwise-coupled into one another, to remove the coupling... e.g.:

 $\partial_z \partial_t^2 E_x \sim -k_z^2 B_y \Rightarrow (eq'n \text{ for}) \partial_t^2 B_y \Rightarrow (more spatial deriv's) \Rightarrow (uncoupled eq'n in \partial_t^4 E_x !)$

<u>Fully-Uncoupled 4th-Order Diff Eq'n</u> (for, e.g.,) $F_x \equiv \{E_x, B_x\}$: $\partial_t^4 F_x$

$$+ \left[\frac{2(1+2p_x)}{t}\right]\partial_t^3 F_z$$

+ { 2 [$(t^{-2p_x})k_x^2 + (t^{-2p_y})k_y^2 + (t^{-2p_z})k_z^2$] + $\frac{1}{t^2}$ [2p_x + 5p_x² - (p_y-p_z)²] } $\partial_t^2 F_x$

+ { $\frac{2}{t} [(t^{-2p_x})k_x^2 + [(t^{-2p_y})k_y^2(1+2p_x-2p_y)] + [(t^{-2p_z})k_z^2(1+2p_x-2p_z)]]$ + $\frac{1}{t^3} ((2p_x-1)[p_x^2 - (p_y-p_z)^2]) \} \partial_t F_x$

+ {
$$[(t^{-2p_x})k_x^2 + (t^{-2p_y})k_y^2 + (t^{-2p_z})k_z^2]^2$$

+ $\frac{2}{t^2}[(t^{-2p_y})k_y^2(p_x - p_y)(1 + p_x + p_z - 3p_y)$
+ $(t^{-2p_z})k_z^2(p_x - p_z)(1 + p_x + p_y - 3p_z)]$ **F**_x

= 0

(& equiv. 4th-Order Diff Eq'ns for $F_y \equiv \{E_y, B_y\}$ & $F_z \equiv \{E_z, B_z\}$ via cyclic permutations)

→ Each field has 4 sol'ns, not 2! (...except for Kasner cases & polarizations where the 2nd-Order Driving Terms on the R.H.S. are zero.)

Exact Soln's for an interesting (though conformally flat & vacuum Kasner) Special Case, good for general $\vec{k} = (k_x, k_y, k_z)$: $\{p_x, p_y, p_z\} = \{p_1, p_2, p_3\} = \{1, 0, 0\}$ In this case, the 2nd-Order eq'ns for $F_x \equiv \{E_x, B_x\}$ are Homogeneous: $\partial_t^2 F_i + \frac{1}{t} \partial_t F_i + \left[\frac{k_x^2}{t^{2}p_x} + (k_y^2 + k_z^2)\right] F_i = 0$, thus possessing the 2 soln's: $F_x \propto J_{\pm ik_x} \left[\sqrt{k_y^2 + k_z^2} t\right]$ (...taking the two *real* combinations.)

For the 4th-Order eq'ns for $F_y \equiv \{E_y, B_y\}$ & $F_z \equiv \{E_z, B_z\}$, the 4 sol'ns (good for each) can be *guessed* from Bessel recursion relations:

$$F_{y,z} \propto t \left\{ J_{(\pm ik_x - 1)} \left[\sqrt{k_y^2 + k_z^2} t \right] + J_{(\pm ik_x + 1)} \left[\sqrt{k_y^2 + k_z^2} t \right] \right\} \propto J_{\pm ik_x} \left[\sqrt{k_y^2 + k_z^2} t \right]$$

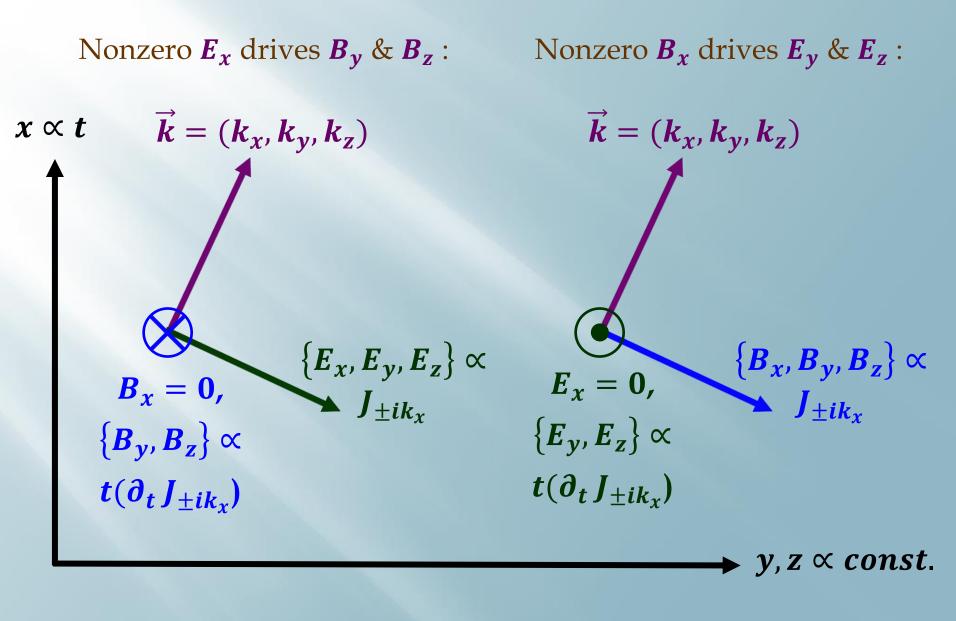
$$(\dots \text{are 2 good soln's, and} \dots)$$

$$F_{y,z} \propto t \left\{ J_{(\pm ik_x - 1)} \left[\sqrt{k_y^2 + k_z^2} t \right] - J_{(\pm ik_x + 1)} \left[\sqrt{k_y^2 + k_z^2} t \right] \right\} \propto t \left\{ \partial_t J_{\pm ik_x} \left[\sqrt{k_y^2 + k_z^2} t \right] \right\}$$

$$(\dots \text{happen to be the other 2 good sol'ns.})$$

Finally, considering <u>Polarization</u> states, these soln's can be *illustrated* as follows...

<u>Matching these 4th-Order Soln's via the Maxwell Eq'ns for this $\vec{p} = (1,0,0)$ </u> <u>Kasner case, the fields can be written as superpositions of 2 diff. Polarizations:</u>



The Difficulty in Solving cases w/general Kasner p-Values...

We can often "guess" the 4 soln's for the "driven" fields w/Nonhomogeneous 2nd-Order eq'ns, from the 2 soln's for the Homogeneous eq'ns (R.H.S. always zero for *some* polarization)... *but only if the* 2nd-Order eq'ns are <u>solvable</u> :

$$\partial_t^2 F_i + \frac{N(p's)}{t} \partial_t F_i + \left[\frac{k_x^2}{t^{2p_x}} + \frac{k_y^2}{t^{2p_y}} + \frac{k_z^2}{t^{2p_z}}\right] F_i = 0$$

→ This is not typically solvable (*to my knowledge*) in terms of the usual Bessel Functions, for general values of (*p_x*, *p_y*, *p_z*) !

So, "Solvable Cases":

- ➢ Unique & Consistent 4th-Order eq'ns cannot be produced, unless *two* of { k_x , k_y , k_z } are <u>zero</u>... → <u>1-Dimensional</u> Propagation! (...all <u>solved</u> here as *Special Cases*...)

* 2-Dimensional Propagation – e.g., $\vec{k} = (k_x, k_y, 0)$ – but need $p_x = 1$ and/or $p_y = 1$

* (...Soln's for general (p_x, p_y, p_z) still being sought!)

Solvable cases w/2-Dimensional* Propagation, with: $\vec{k} = (k_x, k_y, 0)$, $p_x \ge p_y$

(* Or, 3-Dimensional Propagation with Cylindrical Symmetry...

if
$$p_z = p_y$$
, $k_y \rightarrow \sqrt{k_y^2 + k_z^2}$; if $p_z = p_x$, $k_x \rightarrow \sqrt{k_x^2 + k_z^2}$)

(I) $p_x = 1$, $p_y < 1$ (No Horizon Prob. in x-dir.): Soln's ~ { $(t^{-\Delta p}) J_{\pm ORD}[ARG]$ }, with:

$$\Delta p = \pm \frac{1}{2} (p_y - p_z) \quad , \quad ORD = \frac{\sqrt{(\Delta p)^2 - k_x^2}}{(1 - p_y)} \quad , \quad ARG = \frac{k_y}{(1 - p_y)} t^{(1 - p_y)}$$

(<u>N.B.</u>: ORD only complex – typically oscillatory – for $\{k_x > \Delta p\}$)

(II) $p_x > 1$, $p_y = 1$ (No Horizon Prob. in $\{x, y\}$ -dir's): Soln's ~ { $(t^{-\Delta p}) J_{\pm ORD}[ARG]$ }, with:

$$\Delta p = \frac{1}{2} [p_x - 1 \pm (1 - p_z)] \quad , \quad ORD = \frac{\sqrt{(\Delta p)^2 - k_y^2}}{(1 - p_x)} \quad , \quad ARG = \frac{k_x}{(1 - p_x)} t^{(1 - p_x)}$$

(<u>N.B.</u>: ORD only complex for $\{k_y > \Delta p\}$; And, ARG $\rightarrow -\infty$, as $t \rightarrow 0$)

(III) $p_x = p_y = 1$, with: $k \equiv \sqrt{k_x^2 + k_y^2}$, $\Delta p = \frac{1}{2}(1 - p_z)$, Soln's ~ { $[t^{\mp \Delta p}] \cos/\sin[\sqrt{k^2 - \Delta p^2} \ln t]$ } (<u>N.B.</u>: Only oscillatory for { $k > \Delta p$ })