Examining Accretion Disk Properties of Sgr A*

Ian Christie (Purdue University)

Texas Symposium:

Thursday, December 17th

In collaboration with:

Maria Petropoulou (Purdue), Petar Mimica (Valencia), Dimitrios Giannios (Purdue)

Properties of Sgr A*

- Quiescent luminosity of . (Baganoff et al., 2003)
- Short duration X-ray flares by NuSTAR (few hours). (Barrière et al., 2014 or wait till a few presentations from now!)
- We will discuss month-long X-ray flares. (Christie et al. in prep.)

Composite X-ray image (Y.Bai. et al).

Gas Density around Sgr A*

- Sgr A* is an ideal place to study quiescent accretion and properties of geometrically thick disk.
- At Bondi Radius (~10⁵ R_g), Chandra resolves X-ray, thermally emitting gas with density. (Baganoff et al. 2003)
- Very close to the black hole (~), Faraday rotation constrains massloss rate at M_w. (Marrone et al. 2007, Mos´cibrodzka et al. 2009)
- We aim to study properties of the disk between two boundaries.

Stars in Galactic Center: The S-Cluster

- Massive, B-dwarf stars with powerful winds of .
- * The brightest star, S2, is characterized by a close pericenter passage of $\sim 3000 \, R_g$ and mass loss rate M_W . (Martins et al., 2008)
- These stars, specifically \$2, are good probes of the accretion disk. (Giannios & Sironi, 2013)

Stellar Wind – Accretion Disk Interactions

Interactions cause the formation of a bow shock in stellar wind of star.

Determining Shape of Termination Shock

- Assumptions for semi-analytical model:
 - i) The system has reached a steady state.
 - ii) The shocked wind region falls within the thin shell limit.
- Follow an analysis of momentum supported bow shocks.
 (Wilkin, 1996)
- Include thermal pressure of disk: P_{therm} .

Shape of Termination Shock

Properties of Shocked Stellar Wind

 \bullet Using Rankine-Hugoniot conditions — derivations of T_{sw} thermal bremsstrathus g power

Testing Our Model Through Hydro-Simulations

- Used to make comparisons of:
 - Our estimates of the termination shock and contact discontinuity.
 - Thermal bremsstrahlung power produced from the shell.
- Large back region beyond termination shock is dominated by Kelvin-Helmholtz instabilities.

Testing Our Model Through Hydro-Simulations

- Used to make comparisons of:
 - Our estimates of the termination shock and contact discontinuity.
 - Thermal bremsstrahlung power produced from the shell.
- Large back region beyond termination shock is dominated by Kelvin-Helmholtz instabilities.

Termination Shock & Contact Discontinuity

These surfaces are quickly prone to instabilities.

Stimates for these interfaces valid up to $\frac{\pi}{2}$.

Christie et al. in prep.

Bremsstrahlung Emission from Shell

- Computation of bremsstrahlung emission produced from the shell is permitted up to with M_w
- Consider wind compositions of hydrogen and solar metallicities.
- $L_{Hydrogen} {}^{3/2} n_d^{1/2} v_w^{-1/2}$

Contributions from Back Region

- Bremsstrahlung emission produced by all shocked wind computed as a function of both α and z.
- Back region contributes large fraction to total luminosity (~10 times that produced from the shell).

Evolution of Back Region

 Time dependent density used to model transit through pericenter and observe evolution of "mixing" region.

Summary

- Thermal pressure of the accretion disk substantially affects the emission.
- Radiation from tail of bow shock structure dominates emission.
- The passage of a star through the accretion disk of Sgr A* produces a bow shock while an observable, month-long X-ray flare may be expected with luminosities

Texas Symposium: 17/12/2015

Simulation Setup

- Performed using hydrodynamic code MRGENESIS (Mimica et al. 2009)
- ❖ 3rd order Runge-Kutta scheme for time integration.
- Piecewise-parabolic method for spatial interpolation (Colella & Woodward 1984).
- Reflective boundary conditions along symmetry axis.