Glitches and anti-glitches in accreting pulsars: expected properties and observability

L. Ducci^{1,2}, P. M. Pizzochero^{3,4}, V. Doroshenko¹, A. Santangelo¹, S. Mereghetti⁵, C. Ferrigno²

 1 Institut für Astronomie & Astrophysik, Tübingen; 2 ISDC Genève; 3 University of Milan, 4 INFN, Milan, 5 INAF/IASF Milan

15 December 2015

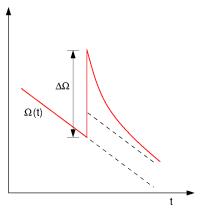
This work is partially supported by the Bundesministerium für Wirtschaft und Technologie through the Deutsches Zentrum für Luft und Raumfahrt (grant FKZ 50 OG 1301).

Index

Introduction

- Glitches in isolated pulsars: observational properties
- Superfluid vortex model

2 Glitches and anti-glitches in accreting pulsars

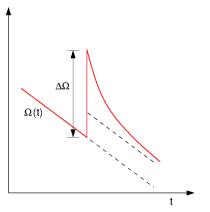

- glitch and anti-glitch scenarios
- Results and observability

Part I

Introduction

Observational properties

- Glitches observed in over 100 isolated radio pulsars and magnetars;
- Long-term spin-down $\dot{\Omega}_{\infty} = 10^{-15} 10^{-10} \, \text{rad} \, \text{s}^{-2}; \label{eq:spin-down}$
- Jumps in angular velocity up to $\Delta\Omega\approx 10^{-4}\,\text{rad}\,\text{s}^{-1};$
- Quasi-exponential relaxation of $\dot{\Omega}(t>t_{
 m gl})$ to $\dot{\Omega}_{\infty}.$



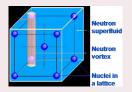
Models to explain glitches:

- starquake models (Baym & Pines 1971);
- superfluid vortex models (Anderson & Itoh 1975)

Observational properties

- Glitches observed in over 100 isolated radio pulsars and magnetars;
- Long-term spin-down $\dot{\Omega}_{\infty} = 10^{-15} 10^{-10} \, \text{rad} \, \text{s}^{-2}; \label{eq:spin-down}$
- Jumps in angular velocity up to $\Delta\Omega\approx 10^{-4}\,\text{rad}\,\text{s}^{-1};$
- Quasi-exponential relaxation of $\dot{\Omega}(t>t_{
 m gl})$ to $\dot{\Omega}_{\infty}.$

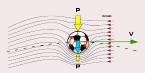
Models to explain glitches:


- starquake models (Baym & Pines 1971);
- superfluid vortex models (Anderson & Itoh 1975).

Superfluid vortex model

- matter divided into (1) neutron superfluid; (2) normal component (that corotates with the pulsar magnetic field).
- ortating superfluid organised as array of vortices parallel to the spin axis of the NS.

Vortex pinning


- vortices pinned to the lattice of ions;
- vortices not coupled with the normal component of the star;

 therefore, although the crust spins-down, the superfluid conserves its angular momentum.

Vortex unpinning

- As the NS spins-down, a rotational lag builds up between the superfluid vortices and the normal component ω = Ω_s - Ω_n;
- When $\omega = \omega_{cr}$, the *Magnus force* unpins and moves them out.

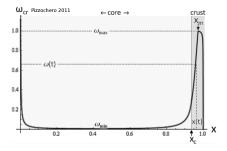
- transfer of angular momentum to the normal component;
- star surface spins-up \Rightarrow glitch.

Motivation

- Several glitches have been observed in young, isolated pulsars;
- A detection in accretion-powered X-ray pulsars is still lacking;

₩

- Investigate conditions under which glitches are more likely to occur in accreting pulsars;
- Determine the expected properties and observability of glitches;


Part II

Glitches and anti-glitches in accreting pulsars

(Ducci et al. 2015; A&A 578, 52)

Snowplow model (Pizzochero 2011)

- Snowplow model can predict three observables: Δt_{gl} , $\Delta \Omega_{gl}$, $\Delta \dot{\Omega}_{gl}$, $\dot{\Delta} \dot{\Omega}_{gl}$, $\dot{\Omega}_{\infty}$;
- Density profile of the pinning force; maximum value $f_m \approx 10^{15} \, \text{dyn cm}^{-1}$ at $\rho \approx 0.2 \rho_0$;
- Critical lag for depinning ω_{cr} obtained by equating f_{pin} and f_{Mag} :

- Vortices from *x* < *x*_m accumulates in a vortex layer at *x*_m;
- When $\omega(x_m) = \omega_{max}$, the layer suddenly moves out and exchange the stored angular momentum with the normal component \Rightarrow glitch.

 \Rightarrow accreting pulsars ($\dot{\Omega}_{\infty} < 0$): $\Delta t_{\rm gl} \approx 29 / \dot{\Omega}_{-11}$ yr; $\Delta \Omega_{\rm gl} \approx 10^{-4}$ rad s⁻¹.

Some XRBs show long-term spin-up \Rightarrow good candidates for anti-glitches.

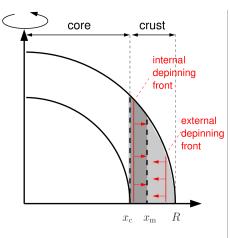
anti-glitch:

sudden spin-down caused by a mechanism of angular momentum transfer similar to that of glitches (proposed for the first time by Pines+1980).

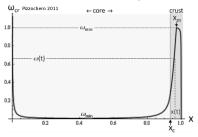
• We modified the snowplow model of Pizzochero 2011 to calculate $\Delta \Omega_{\rm a-gl};$

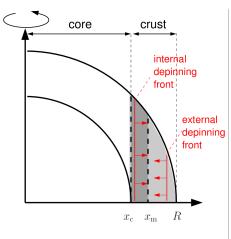
glitch and anti-glitch scenarios Results and observability

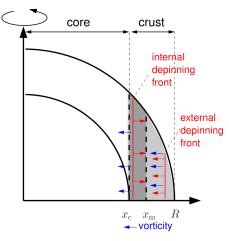
Anti-glitch scenario


Glitch:

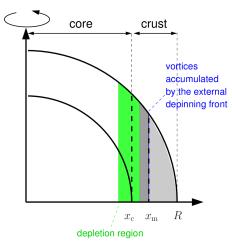
- spin-down of the crust;
- vortices expelled outwards.

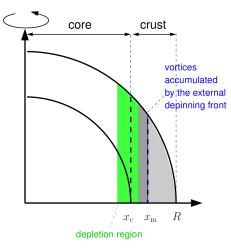

glitch and anti-glitch scenarios Results and observability


Anti-glitch scenario

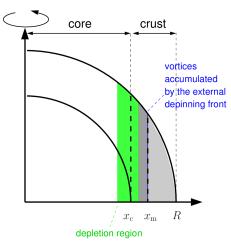

- the crust accelerates (long-term spin-up);
- new vortices created at R;
- new vortices x > x_m accumulated by the external depinning front moving inward;
- internal depinning front moves outwards across the region x < x_m.

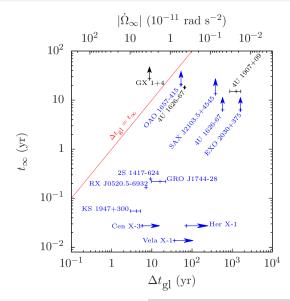
- new vortices x > x_m accumulated by the external depinning front moving inward;
- internal depinning front moves outwards across the region x < x_m.




- vorticity moves from *R* to *x*_m;
- vorticity moves from the inner crust to the core:

$$\vec{F}_{\rm m} = \kappa \rho_{\rm s} \hat{\mathbf{e}}_{\rm z} \times (\vec{\mathbf{v}}_{\rm L} - \vec{\mathbf{v}}_{\rm s})$$


- vortices accumulated at x_m by the external depinning front;
- depletion of vortices around x_c (regions with lower pinning potential);
- Vortices accumulated at x_m will fill depleted region;
- Transfer of angular momentum will take place in this region.
- $\Delta\Omega_{\rm a-gl}\approx 10^{-5}-10^{-4}\, \rm rad\, s^{-1}$


- vortices accumulated at x_m by the external depinning front;
- depletion of vortices around x_c (regions with lower pinning potential);
- Vortices accumulated at x_m will fill depleted region;
- Transfer of angular momentum will take place in this region.
- $\Delta \Omega_{\rm a-gl} \approx 10^{-5} 10^{-4} \, \text{rad} \, \text{s}^{-1}$

- vortices accumulated at x_m by the external depinning front;
- depletion of vortices around x_c (regions with lower pinning potential);
- Vortices accumulated at x_m will fill depleted region;
- Transfer of angular momentum will take place in this region.
- $\Delta \Omega_{\rm a-gl} \approx 10^{-5} 10^{-4}\, \rm rad\, s^{-1}$

$\Delta t_{ m gl} - t_{\infty}$ diagram

Conclusions

We outlined for the first time the expected observational properties of glitches in accreting pulsars.

- Glitches caused by the superfluid: possible, can be detected;
- Anti-glitches in accreting pulsars: XRBs unique laboratory to study them;
- Anti-glitch ($\dot{\Omega}_\infty > 0): \; \Delta \Omega_{\rm a-gl} \approx 10^{-5} 10^{-4} \, \text{rad} \, \text{s}^{-1}$
- GX 1+4 best candidate for the detection of glitches;
- Other results:
- Glitches caused by starquakes: rare and their detection unlikely;
- Coupling timescale between superfluid and normal component $\tau \propto 1/\Omega:$
 - Glitch (anti-glitch) long rise time: $(10^2 10^3)\Omega^{-1}$ s;

glitch and anti-glitch scenarios Results and observability

backup slides

Observability

- Same size of the jumps in angular velocity observed in magnetars and fluxes show that in principle they can also be detected in XRBs;
- *caveat:* A suitable spacing of the observations is required to detect glitches and distinguish them from other timing irregularities induced by variations in the accretion torque;
- Observations of correlated changes in the source flux (typical of accretion torque) should help to recognize them.

X-ray binaries (NS or BH + donor star)

 X-ray emission produced by the accretion of matter (wind-fed or accretion disk);

•
$$L_x = 10^{32} - 10^{38} \, {
m erg \, s^{-1}}; \ t_{spin} = {
m ms \, to} \approx 10^4 \, {
m s};$$

- how many? few hundreds in our Galaxy (few tens bright accr. pulsars);
- accr. pulsars can experience spin-up and spin-down: caused by the interaction between the accretion flow and the magnetosphere;
- accr. torque ≃ e.m. braking torque in young glitching pulsars;
- rate of glitches ∝ Ω; ⇒ glitches in XRBs more frequent than expected in old pulsars.

