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The GLC gauge (1)

The Geodesic Light-Cone (GLC) coordinates consist of a timelike coordinate τ
(which can always be identified with the proper time of the synchronous
gauge), of a null coordinate w and of two angular coordinates θ̃a (a = 1, 2):

ds2 = Υ2dw 2 − 2Υdwdτ + γab(d θ̃a − Uadw)(d θ̃b − Ubdw)

Past light-cone in FRW coordinates Past light-cone in GLC coordinates



The GLC gauge (2)

This identification holds if no caustics appear in light-propagation. Otherwise,
an intrinsic limit breaks our description

CAUSTIC

Caustic on the inhomogeneous light-cone Past light-cone in GLC
coordinates



The GLC gauge (3)

Fundamental properties:

I w = constant defines the past light-cone of the observer (ourselves)

I uµ = −∂µτ describes a geodesic flow (related to SG)

I kµ = ωΥ−1δµτ is the quadri-momentum of the photon (constant w and
θa)

I These properties are really useful: they allow us to express easily redshift
only as function of τ :

1 + z =
(kµuµ)s
(kµuµ)o

=
Υ
(
τo ,w , θ̃

a
)

Υ
(
τs ,w , θ̃a

)
I Really similar to FRW metric, but exact and non perturbative!!!

I using the GLC coordinates, it is possible averaging physical observables
on the light-cone in a gauge invariant way1 which is also free from UV
and IR divergences2

1Gasperini, Marozzi, Nugier, Veneziano, JCAP 1107 (2011) 008
2Ben-Dayan, Gasperini, Marozzi, Nugier, Veneziano, Phys.Rev.Lett. 110

(2013) 021301



Definition of the Jacobi map

I Starting from the geodesic deviation equation:

∇2
λξ
µ = Rαβν

µkαkνξβ (1)

where λ is the affine parameter and ∇λ ≡ kα∇α
I We can define the so called Sachs basis {sµA }A=1,2 such that

2-D flat subspace gµνs
µ
A s

ν
B = δAB

Orthogonality conditions sµA uµ = 0 sµA kµ = 0 (2)

Parallel transport Πνµ∇λsµA = 0

I In such a way, let us project the displacement on the Sachs basis
ξA ≡ ξµsAµ the fundamental equation to solve is:

d2

dλ2
JA
B (λ, λo) = RA

C J
C
B (3)

with ξA = JA
B (λ, λo)

(
kµ∂µξ

B

kµuµ

)
o

and initial conditions:

JA
B (λo , λo) = 0 , d

dλ
JA
B (λoλo) = δAB(uµkµ)o



The Jacobi map in the GLC gauge (1)

In GLC gauge, we have that ξa = constant and ξw = 0 is solution of the
geodesic deviation equation

ξa = constant and ξw 6= 0 ξa = constant and ξw = 0



The Jacobi map in the GLC gauge (2)

I Therefore, using the properties of the GLC gauge, we can easily construct
the Jacobi map with the following solution

JA
B (λ, λo) = sAa (λ)

{[(
u−1
τ ∂τ s

)−1
]a
B

}
λ=λo

I So the angular distance is immediately given by:

d2
A = det

(
JA
B (λs , λo)

)
=

√
γ(λs)

1
4

[
det
(
u−1
τ ∂τγab

)
γ3/2

]
λ=λo

, γ ≡ det γab

I In such a way, thanks to the Etherington relation, even the luminosity
distance can be easily written as:

d2
L = 4

Υ−4
s

Υ−4
o

√
γs[

det
(
u−1
τ ∂τγab

)
γ3/2

]
o



Weak lensing and deflection angles

I We know that one of the most important relativistic effects which
happens in light propagation is deviating light-like signals trajectories
because of the content of matter along the traveling

I Finding the relation θas
(
θbo
)

is the key point of lensing theory

I It is useful defining the well known amplification matrix Aa
b =

∂θas
∂θbo

,

because of its connection with other physical observables like angular
distance



Weak lensing and GLC gauge

What is the advantage in using GLC gauge for studying deflection angles?

I First of all, θ̃a = θao by construction

I In this way, if xµ =
(
τ,w , θ̃a

)
and yµ = (η, r , θa), the crucial relation

between angles can be found by a simple coordinates transformation:

gµν =
∂yµ

∂xα
∂yν

∂xβ
gαβGLC

I Solving this set of equations will give us the relation:

θa = θa
(
τ,w , θ̃b

)
= θa

(
z ,w , θ̃b

)



Connecting Poisson gauge to GLC gauge (1)

I Let us evaluate the deflected angles in the well known Poisson gauge

I By defining η+ = η + r , we adopt the following form for its third order
expression:

ds2 =gPG
µν dy

µdyν = a2 (η)
[
−2dη2 (Φ + Ψ) + (1− 2Ψ)

(
dη+2 − 2dηdη+

)
+ (1− 2Ψ)

(
η+ − η

)2
(
dθ2 + sin2 θdφ2

)]
where Ψ = ψ + 1

2
ψ(2) + 1

6
ψ(3) and Φ = φ+ 1

2
φ(2) + 1

6
φ(3)

I This way to proceed allows us to get the full deflection angles (even the
non leading lensing terms) up to each desired order in perturbation theory



Amplification matrix and deflection angles (1)
I From the amplification matrix, we can try to build a general iterative

approach for having the deflection angles up to each desired order

Aa
b =

∂θa

∂θbo
≡ δab −Ψa

b

I From the previous definition, we get that

(Ψa
b)(n) = −∂θ

a(n)

∂θ̃b

I Hence, according to the solutions that we found for angles, we obtain3

(Ψa
b)(1) =

2

ηo − ηs

∫ ηo

ηs

dη′
η′ − ηs
ηo − η′

γ̂ac
0 ∂c∂bψ(η′, ηo − η′, θao)

(Ψa
b)(2) =

2

ηo − ηs

∫ ηo

ηs

dη′
η′ − ηs
ηo − η′

γ̂ac
0

[
∂c∂b∂dψ(η′)θd(1) − ∂c∂dψ(η′)Ψ

d(1)
b

]
(Ψa

b)(3) =
2

ηo − ηs

∫ ηo

ηs

dη′
η′ − ηs
ηo − η′

γ̂ac
0

[
∂c∂b∂dψ(η′)θd(2) +

1

2
∂c∂b∂d∂eψ(η′)θd(1)θe(1)

−∂c∂d∂eψ(η′)θe(1)Ψ
d(1)
b − ∂c∂dψ(η′)Ψ

d(2)
b

]
3F, Gasperini, Marozzi, Veneziano, JCAP 1508 (2015) 08, 020



Amplification matrix and deflection angles (2)

I Those expressions seem to behave perfectly for solving the so called lens
equation

Ψa
b =

2

ηo − ηs

∫ ηo

ηs

dη′
η′ − ηs
ηo − η′

γ̂ac
0 ∂c∂dψ(η′, ηo − η′, θa)

[
δdb −Ψd

b

]
I In order to have the full agreement between our results and the lens

equation, we have to expand the angles appearing in ψ



Finding a more satisfactory starting point (1)

I According to the standard definition, the indices in the amplification
matrix seems to depend by the choice of the coordinates. Can we find a
theoretical well posed starting point for its definition?

I In lensing theory, it is well known that the amplification matrix can be
decomposed as

AA
B =

(
1− κ− γ̂1 ω̂ − γ̂2

−ω̂ − γ̂2 1− κ+ γ̂1

)
where κ is the convergence, ω̂ the vorticity and |γ̂|2 = γ̂2

1 + γ̂2
2 the total

shear

I This decomposition leads to the relation

µ−1 = (1− κ)2 + ω̂2 − |γ̂|2

where µ =
(
detAA

B

)−1
=
(

d̄A
dA

)2

is the magnification



Finding a more satisfactory starting point (2)

I Let us notice that both the determinants of the Jacobi map and the
amplification matrix are related to the angular distance. They just differ
for the dimension

I Therefore, in order to provide a better defined starting point for the
amplification matrix, let us identify4

AA
B ≡

JA
B

d̄A

I This equality allows us to define an amplification matrix independently
from the coordinates system. Moreover, in the GLC gauge, we have that

A ∼ s

4F, Nugier, JCAP 1502 (2015) 02, 002



Weak lensing in GLC coordinates

I Thanks to our identification, we can immediately furnish exact
expressions for the amplification matrix entries.

I In particular, we choice the following combinations:

(1− κ)2 + ω̂2 =

(
uτo
d̄A

)2
{[

γ γ̇abγ
bc γ̇cd(

detab γ̇ab
)2

]
o

γ γad + 2

√
γ γo(

detab γ̇ab
)
o

}

|γ̂|2 =

(
uτo
d̄A

)2
{[

γ γ̇abγ
bc γ̇cd(

detab γ̇ab
)2

]
o

γ γad − 2

√
γ γo(

detab γ̇ab
)
o

}

because they don’t depend on the residual U(1) rotation that we can
perform on the Sachs basis.

I By construction of the GLC gauge, these results hold as long as no
caustics appear.



Weak lensing in an exact non-linear regime (1)

I Having these results would allow us to study any kind of inhomogeneities
we can think at, at least in principle.

I Unfortunately, solving Einstein’s equations in the GLC gauge is not a
trivial task, even if fascinating.

I In order to apply our results to a physical case, we can perform a
coordinates transformation from GLC gauge to a solvable metric.

I To this end, we can consider an Lemâıtre-Tolman-Bondi metric

ds2 = −dt2 + X 2(t, r) + A2(t, r)
[
dθ2 + sin2 θdφ2

]
with an off-center observer.

I The angular distance can be exactly evaluated in this case, thanks to a
coordinates transformation:

d2
A =

A2X
(
r 2 + d2 − 2 rd cos θ

)√
A2 d2 sin2 θ + r 2X 2 (r − d cos θ)2

A0(d)

d X0(d)

sin θ

sin θ̃



Weak lensing in an exact non-linear regime (2)

I The lensing quantities in this case are then given by

(1− κ)2 =
A2(t, r)

4 sin θ d2r a2(t)X 2
0 (d)
√
d2 − 2dr cos θ + r 2

[
d2 sin2 θX 2

0 (d)

+
A2

0(d)X 2(t, r)
(
d2 − 2dr cos θ + r 2

)2

d2 sin2 θA2(t, r) + r 2X 2(t, r)(r − d cos θ)2

+
2d sin θA0(d)X0(d)X (t, r)

(
d2 − 2dr cos θ + r 2

)√
d2 sin2 θA2(t, r) + r 2X 2(t, r)(r − d cos θ)2

]
,

|γ̂|2 =
A2(t, r)

4 sin θ d2r a2(t)X 2
0 (d)
√
d2 − 2dr cos θ + r 2

[
d2 sin2 θX 2

0 (d)

+
A2

0(d)X 2(t, r)
(
d2 − 2dr cos θ + r 2

)2

d2 sin2 θA2(t, r) + r 2X 2(t, r)(r − d cos θ)2

−
2d sin θA0(d)X0(d)X (t, r)

(
d2 − 2dr cos θ + r 2

)√
d2 sin2 θA2(t, r) + r 2X 2(t, r)(r − d cos θ)2

]



Weak lensing in an exact non-linear regime (5)

I Some interesting illustrative models can be analytically solved with this
metric. For instance, we can consider an inhomogeneous flat ΛCDM
model with an underdensity region...
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Weak lensing in an exact non-linear regime (6)

Having in mind that our exact solution is given, in general, by:

A(t, r) = r

[
1− ΩΛ0(r)

ΩΛ0(r)

]1/3
(

sinh

[
arcsinh

√
ΩΛ0(r)

1− ΩΛ0(r)
+

3

2

√
ΩΛ0(r)H0(r) t

])2/3

with X (t, r) = ∂rA(t, r), we can understand our result by looking at the
following plots:
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Conclusions and perspectives (1)

I With the aim of the GLC, we have provided exact model independent
expressions for some relevant physical observables.

I This is remarkable from both the theoretical (exact solution for the Sachs
equation, iterative approach for deflection angles) and the
phenomenological (model independence of the results) point view

I Formulating lensing theory in term of the Jacobi map helps us in taking
into account all the effects, even the non linear ones. Within the GLC
gauge, this relation becomes fundamental, because of the knowledge of
the Jacobi map.



Conclusions and perspectives (2)

I This new approach allows to get directly the expression of the desired
physical quantities in terms of the observer angles and redshift, i.e. other
physical observables

I The same evaluation has been applied for deriving the angular/luminosity
distance up to second order in perturbation theory. Result agrees with
other evaluation given in literature, within the framework of the GLC
gauge
(Ben-Dayan, Marozzi, Nugier, Veneziano, JCAP 1211 (2012) 045)
(Ben-Dayan, Gasperini, Marozzi, Nugier, Veneziano, JCAP 1306 (2013)
002)
(F, Gasperini, Marozzi, Veneziano, JCAP 1311 (2013) 019)

I This evaluation directly allows to get the (full) deflection angles up to the
desired order



Conclusions and perspectives (3)

I The exact knowledge of the deflection angles up to each desired order
certainly helps us in evaluating lensing corrections to some relevant
spectra (for instance the CMB’s ones) beyond the first order
approximation [WORK IN PROGRESS]

I This formalism seems to be promising even in the description of
Ultra-Relativistic particles [WORK IN PROGRESS]

I An interesting goal to reach is solving Einstein’s equations with this
gauge, at least perturbatively [WORK IN PROGRESS]

I Recovering the standard definition of the Amplification matrix and
understanding if different choices can be done [FUTURE TASK]

I Extending this formalism in order to include caustics is one of the most
interesting goal to reach [FUTURE TASK]


