Impact of other scalar fields on oscillons after hilltop inflation

Stefano Orani

with Stefan Antusch

hep-ph/1511.02336

also Francesco Cefalà and David Nolde
Outline

1. Preheating in single-field hilltop inflation
2. Oscillon formation
3. Parametric resonance of χ sourced by inhomogeneous ϕ
4. Impact of χ on oscillons
5. Conclusions
\[V(\phi) = V_0 \left(1 - \frac{\phi^6}{v^6} \right)^2, \quad \text{with } v \ll m_{Pl} \]

\[N_e \text{ e–folds} \]

\[\eta(\phi_{\text{end}}) = -1 \]

\[V_0 \]

\[\phi_* \quad \phi_{\text{end}} \quad v \]

\text{tachyonic preheating}

\[\Rightarrow \phi \text{ fluctuations grow for } k^2 + V_{\phi\phi} < 0 \]

- leads to formation of IR dominated spectrum
- ends when \(\phi = v \) for the first time
- for \(v \lesssim 10^{-5} m_{Pl} \), \(\langle \delta \phi^2 \rangle \sim v^2 \) during this phase
- for \(v \gtrsim 10^{-5} m_{Pl} \), tachyonic preheating is followed by coherent oscillations of the inflaton

\[P_{\phi(k)}/v^2 \]

\[k/(aH_i) \]
\[V(\phi) = V_0 \left(1 - \frac{\phi^6}{v^6} \right)^2 , \quad \text{with } v \ll m_{Pl} \]

\[N_\ast \text{ e–folds} \]

before \(\phi_{\text{end}} \)

\[\eta(\phi_{\text{end}}) = -1 \]

\[V_0 \]

\[\phi_* \]

\[\phi_{\text{end}} \]

\[\nu \]

tachyonic oscillations

⇒ \(\phi \) fluctuations grow around \(k_p/a \sim 200 \sqrt{V_0/3} \)

• leads to spectrum peaked at \(k_p \)

• for \(v \lesssim 10^{-1} m_{pl} \), \(\langle \delta\phi^2 \rangle \sim v^2 \) during this phase

⇒ for \(10^{-5} \lesssim v/m_{pl} \lesssim 10^{-1} \), growth of fluctuations at \(k_p \) leads to formation of ”hill-crossing” oscillons, separated by \(\xi \sim 2\pi/k_p \)

• oscillons eventually settle around \(\phi = v \)
$V(\phi) = V_0 \left(1 - \frac{\phi^6 v}{v^6}\right)^2$, with $v = 10^{-2} m_{Pl}$.

Movie of ρ from 2D simulation with 1024^2 points.
Oscillons:

Spatially localized oscillating configurations of a real scalar field

- form when scalar field oscillates in potential that is shallower than quadratic away from the minimum
- they have a surprisingly long lifetime: stable for large number of oscillations, can survive for many e-folds
- arise in many inflationary models favoured by observations

Interesting and potentially observable consequences:

- generate gravitational waves when they form and when they decay
- affect the expansion history of the universe possibly leading to signatures in the CMB
- ...
\[V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2), \quad \text{with } v = 10^{-2} m_{Pl} \]

\[N_* \text{ e–folds before } \phi_{end} \]

\[\eta(\phi_{end}) = -1 \]

parametric resonance of χ sourced by inhomogeneous ϕ

\Rightarrow χ fluctuations grow after $\delta \phi \ll \sqrt{\langle \delta \phi^2 \rangle}$
- exponential growth only if λ is inside resonance band
\[V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6} \right)^2 + \frac{\chi^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2), \quad \text{with } v = 10^{-2} m_{Pl} \]

\[N_* \text{ e-folds before } \phi_{\text{end}} \]
\[\eta(\phi_{\text{end}}) = -1 \]

parametric resonance of \(\chi \) sourced by inhomogeneous \(\phi \)

\(\Rightarrow \) \(\chi \) fluctuations grow after \(\delta \phi \ll \sqrt{\langle \delta \phi^2 \rangle} \)

- exponential growth only if \(\lambda \) is inside resonance band
- \(\chi \) develops spectrum peaked at \(k \sim k_p \)

\(\Rightarrow \) what is the impact of this resonance on oscillons?
\[V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2), \]

with \(v = 10^{-2} m_{Pl} \)

Consider three cases:

I no resonance

\[\Rightarrow \lambda \text{ outside resonance band} \]

\(\langle \delta \chi^2 \rangle \) not amplified and its vacuum fluctuations redshift

II ”slow” resonance

\[\Rightarrow \lambda \text{ inside resonance band} \]

\(\langle \delta \chi^2 \rangle \) amplified \(\sim 1 \) e-fold after \(\phi \) has formed oscillons

III ”fast” resonance

\[\Rightarrow \lambda \text{ inside resonance band} \]

\(\langle \delta \chi^2 \rangle \) amplified during initial phase of oscillons formation
\[V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\chi^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2), \quad \text{with } v = 10^{-2} m_{\text{Pl}} \]

In what follows: results of lattice simulations of cases I, II and III
⇒ solve system of equations:

\[
\begin{align*}
\ddot{\phi}(t, \bar{x}) + 3H \dot{\phi}(t, \bar{x}) - \frac{1}{a^2} \bar{\nabla}^2 \phi(t, \bar{x}) + \frac{\partial V}{\partial \phi} &= 0 \\
\ddot{\chi}(t, \bar{x}) + 3H \dot{\chi}(t, \bar{x}) - \frac{1}{a^2} \bar{\nabla}^2 \chi(t, \bar{x}) + \frac{\partial V}{\partial \chi} &= 0
\end{align*}
\]

\[H^2 \equiv \frac{\langle \rho \rangle}{3m_{\text{Pl}}^2} = \frac{1}{3m_{\text{Pl}}^2} \left\langle V + \sum_f \left(\frac{1}{2} f^2 + \frac{1}{2a^2} |\bar{\nabla} f|^2 \right) \right\rangle \]

on discretized lattice with parameters:

<table>
<thead>
<tr>
<th>(v/m_{\text{Pl}})</th>
<th>(\langle \phi \rangle_i/v)</th>
<th>(\langle \dot{\phi} \rangle_i/v^2)</th>
<th>(\langle \chi \rangle_i/v)</th>
<th>(\langle \dot{\chi} \rangle_i/v^2)</th>
<th>(H_i/m_{\text{Pl}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-2})</td>
<td>0.08</td>
<td>2.49 \times 10^{-9}</td>
<td>0</td>
<td>0</td>
<td>1.9 \times 10^{-10}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>N</th>
<th>(k_{uv})</th>
<th>(k_{ir})</th>
<th>(\delta x)</th>
<th>(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1024</td>
<td>6.2 \times 10^4 H_i</td>
<td>60.5 H_i</td>
<td>10^{-4}/H_i</td>
<td>0.1/H_i</td>
</tr>
</tbody>
</table>
case I: no parametric resonance

\[\lambda = 1.5 \times 10^{-3}/m_{\text{pl}}, \rho \text{ slice at } a = 10.0 \]

\[\lambda = 1.5 \times 10^{-3}/m_{\text{pl}}, \rho \text{ slice at } a = 22.0 \]

- at \(a = 10 \): many oscillons still present
- at \(a = 22 \): less oscillons

\[\Rightarrow \] they start decaying before the end of the simulation

without parametric resonance of \(\chi \) the evolution of oscillons is equal to single-field case
case II: ”slow” parametric resonance

\[\lambda = 1.37 \times 10^{-3}/m_{pl}, \rho \text{ slice at } a=10.0 \]

\[\lambda = 1.37 \times 10^{-3}/m_{pl}, \rho \text{ slice at } a=22.0 \]

- at \(a = 10 \): many oscillons still present, as in case I
- at \(a = 22 \): more oscillons, more pronounced

\[\Rightarrow \] ”slow” parametric resonance of \(\chi \) enhances the oscillons formed by \(\phi \)
case II: "slow" parametric resonance

\[\lambda = 1.37 \times 10^{-3}/m_{pl}, \ \phi \ \text{slice at} \ a = 22.0 \]

\[\lambda = 1.37 \times 10^{-3}/m_{pl}, \ \chi \ \text{slice at} \ a = 22.0 \]

- at \(a = 10 \): many oscillons still present, as in case I
- at \(a = 22 \): more oscillons, more pronounced

 \(\Rightarrow \) \(\phi \) and \(\chi \) are correlated: the oscillons get imprinted in the \(\chi \) field

\(\Rightarrow \) "slow" parametric resonance of \(\chi \) enhances the oscillons formed by \(\phi \)

\(\Rightarrow \) \(\phi \) and \(\chi \) are correlated: the oscillons get imprinted in the \(\chi \) field
case **III**: "fast" parametric resonance

\[\lambda = 10^{-3}/m_{pl}, \rho \text{ slice at } a = 10.0 \]

\[\lambda = 10^{-3}/m_{pl}, \rho \text{ slice at } a = 22.0 \]

- at \(a = 10 \): no oscillons
- at \(a = 22 \): no oscillons

\[\Rightarrow \] "fast" parametric resonance of \(\chi \) suppresses the oscillons formed by \(\phi \)
case I: no parametric resonance

\[\lambda = 1.5 \times 10^{-3}/m_{pl}, \quad \rho \text{ slice at } a=10.0 \]

\[\lambda = 1.5 \times 10^{-3}/m_{pl}, \quad \rho \text{ slice at } a=22.0 \]

\[\rho \text{ tail distribution for } \lambda = 1.5 \times 10^{-3}/m_{pl} \]

tail distribution: number of lattice points with energy density \(\rho \)

in grey: tail distribution of energy \(\rho_g = m_\phi^2 g_1^2/2 + m_\chi^2 g_2^2/2 \),

where \(g_1 \) and \(g_2 \) are discrete Gaussian fields with variances \(\langle g_1^2 \rangle = \langle \phi^2 \rangle \) and \(\langle g_2^2 \rangle = \langle \chi^2 \rangle \)
case I: no parametric resonance

- at $a = 10$: tail distribution stretches to $\rho \sim 300\langle \rho \rangle$, far away from Gaussian tail
 ⇒ expected when oscillons are present
- at $a = 22$: tail distribution shrunk, but still more spread than Gaussian
case II: ”slow” parametric resonance

- at $a = 10$: tail distribution stretches to $\rho \sim 700 \langle \rho \rangle$, longer than case I tail
 \Rightarrow more energetic oscillons are present
- at $a = 22$: tail distribution spread to $\rho \sim 3000 \langle \rho \rangle$ but lower around $\rho \sim 100 \langle \rho \rangle$
case III: ”fast” parametric resonance

- **at $a = 10$:** tail distribution close to Gaussian tail
- **at $a = 22$:** tail distribution close to Gaussian tail

\Rightarrow no oscillons are formed and field fluctuations close to Gaussian
The evolution of ρ in cases I, II and III is shown in the graph. The line colors and markers correspond to:

- Blue line: $\lambda = 1.5 \times 10^{-3}/m_{pl}$
- Green line: $\lambda = 1.37 \times 10^{-3}/m_{pl}$
- Red line: $\lambda = 10^{-3}/m_{pl}$
- Black dashed line: $\lambda = 0$
- Gray dashed line: Gaussian

$\rho_{0.1}$ for which 10% of the energy is stored in regions with $\rho > \rho_{0.1}$

\Rightarrow larger $\rho_{0.1}$ indicates that more energy is in regions with larger ρ

\Rightarrow more oscillons

I no resonance case as single field case (dashed black):

$\rho_{0.1}$ grows until $a = 10$, then decreases

II "slow" resonance leads to more energy stored in oscillons

III "fast" resonance suppresses the formation of oscillons, statistics close to Gaussian

\Rightarrow the timing of the resonance of χ determines whether the oscillons are enhanced or suppressed
Summary:

- ϕ oscillons form after hilltop inflation, during the phase of tachyonic oscillations.
- When another scalar field χ is present, a parametric resonance of χ sourced by the inhomogeneous ϕ can happen.
- Depending on the occurrence and timing of the resonance, χ can have different impacts on the oscillons:

 I. If no resonance, χ has no effect on oscillons \Rightarrow as single field case.

 II. “Slow” resonance: χ amplified ~ 1 e-fold after ϕ oscillons have formed.
 \Rightarrow oscillons are enhanced, their lifetime extended.

 III. “Fast” resonance: χ amplified during formation of oscillons.
 \Rightarrow oscillons are suppressed, and the fields have statistics close to Gaussian.
Summary:

- \(\phi \) oscillons form after hilltop inflation, during the phase of tachyonic oscillations
- when another scalar field \(\chi \) is present, a parametric resonance of \(\chi \) sourced by the inhomogeneous \(\phi \) can happen
- depending on the occurrence and timing of the resonance, \(\chi \) can have different impacts on the oscillons:
 - I if no resonance, \(\chi \) has no effect on oscillons \(\Rightarrow \) as single field case
 - II "slow" resonance: \(\chi \) amplified \(\sim 1 \) e-fold after \(\phi \) oscillons have formed
 \(\Rightarrow \) oscillons are enhanced, their lifetime extended
 - III "fast" resonance: \(\chi \) amplified during formation of oscillons
 \(\Rightarrow \) oscillons are suppressed, and the fields have statistics close to Gaussian

Outlook:

- oscillons affect the expansion history of the universe: effect on equation of state, delay thermalization
- their evolution depends on \(\chi \), light degree of freedom during inflation
 \(\Rightarrow \) possible effect on CMB scales via dependence on \((\phi_*, \chi_*)\)
- production of gravitational waves during formation and decay of oscillons
- ...