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Outline

general idea/inspiration behind IR non-local modifications of GR

how to interpret (time) non-localities

localization methods – how to count physical dofs

subtleties in the stability analysis

possible connections with fundamental local quantum theories

Illustrative purposes: action-based model

S = EH +m2R2−2R

Gµν −m2
(
gµν2

−1R
)T

= 0 Maggiore et al. 2014

S = EH +m2
1R2−2R+m2

2Cµναβ2
−2Cµναβ +m2

3Rµν2
−2Rµν GC et al. coming out
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General ideas behind IR non-local modifications of GR

Inspiration: non-local formulation Proca-theory(
1− m2

2

)
∂µF

µν = jν → filtered source

(
1− m2

2

)−1

jν

k � m→ filter ∼ 1 − k � m→ filter � 1

filter ≡ Yukawa suppression e−mr/r2

Is it possible to do the same with (massive) gravity? degravitation! Dvali et al. 2007(
1− m2

2

)
Gµν = 8πGTµν → filtered source

(
1− m2

2

)−1

Tµν

observed Λ: small because ”filtered”

m2 small (∼ H0) but technically natural
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Our illustrative model

Maggiore-Mancarella model Maggiore, Mancarella [1402.0448]

S =
1

16πG

ˆ
dd+1x

√
−g
[
R− m2

2
R

1

22
R

]
,

where 2−1 is a formal inverse of 2 in the scalar representation

(
2
−1R

)
(x) =��hom+

ˆ
dd+1y

√
−g(y)G(x, y)R(y) , 2xG(x, y) =

δ(d+1)(x− y)√
−g(x)

.

Further prescriptions (theory data, part of the model definition)

(1) G(x, y) = 0 , unless y is in the past light cone of x

(2) G(x, y)x0=t0 = 0 , ∂0G(x, y)x0=t0 = 0 .
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Our illustrative model: prescriptions on the Green function

(1) to ensure causality: G(x, y) → Gret(x, y)

causality implemented by hand on eom: Gµν +Kµν ret = 8πGTµν

e.g.
δ

δφ(x)

ˆ
d4x′ φ(x′)

(
2−1φ

)
(x′) =

ˆ
d4x′

[
G(x, x′) + G(x′, x)

]
φ(x′)

diff. invariant action → ∇µTµν = 0 (not spoiled by causality prescription)

(2) initial conditions: G(x, y)x0=t0 = 0 , ∂0G(x, y)x0=t0 = 0 ,

EFT valid below given energy scale (↔ after some t0)

for models 2−1R cosmology independent on t0 in radiation

e.g. FRW (2−1R)(t) = −
ˆ t
t0

dt′
1

ad(t′)

ˆ t′
t0

dt′′ ad(t′′)R(t′′)
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Good properties of the model

This illustrative model has some (very) appealing features

simple: same number of parameters of ΛCDM (+ some prescriptions)

predictive: once m2 chosen to reproduce ΩDE(0), all the rest is fixed

phenomenologically viable

absence vDVZ discontinuity: GR recovered on small scales

stable linear perturbations Dirian et al. [1403.6068], [1411.7692]

comparison with Planck 2013: statistically equivalent to ΛCDM
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”Standard” localization procedure

Localizing fields introduced making use of Lagrange multipliers Maggiore et al.[1402.0448]

Sloc =
1

16πG

ˆ
dd+1x

√
−g
[
R

(
1− m2

2
S

)
− ξ1 (2U +R)− ξ2 (2S + U)

]
,

U = −2−1R = −
ˆ
dd+1y

√
−g(y)G(x, y)R(y) +���Uhom ,

S = −2−1U = 2
−2R = −

ˆ
dd+1y

√
−g(y)G(x, y)U(y) +���Shom ,

with initial conditions inredited from the prescriptions on the Green function

U(t0) = U̇(t0) = S(t0) = Ṡ(t0) = 0 .
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An alternative localization

Introducing a new scalar field Φ

Sloc =

ˆ
dd+1x

√
−g
[
MΦR+

1

2m2
(2Φ)2

]
,

Φ(t0) = M , Φ̇(t0) = Φ̈(t0) =
...
Φ(t0) = 0 ⇔ Φ = M

(
1− m2

22
R

)

Einstein frame, field redefinitions (. . . )

Sloc =

ˆ
dd+1x

√
−g̃
[
M2R̃− 1

2
∇̃µφ∇̃µφ+

1

2
∇̃µψ∇̃µψ −

1

2
m2ψ2 e−

2(φ+ψ)
M

]
,

φ(t0) = φ̇(t0) = ψ(t0) = ψ̇(t0) = 0 .

φ and ψ are dynamical fields but with fixed initial conditions  no new dofs!!
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Spurious dofs and stability analysis

Kinetic term of ψ has wrong sign  is classical stability screwed up?

Localizing fields have to be handled in special way in stability analysis

In other terms: ”standard” stability criterium . . .

Chosen a background, perturbations are stable if under a small change of
initial conditions, the solutions stay ”close” to the original ones

. . . can not be applied in this case

”spurious” ghost is not a priory dangerous for the classical stability:
direct investigation of perturbations needed!
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Stability on Minkowski & cosmological background

Minkowski:

ψ perturbation δψ ∼ exp
√

(m2 − k2)t

time scale instability ∆t ∼ m−1 ∼ H−1
0

cosmologically relevant scales k � m ∼ H0 stable (see absence vDVZ)

FLRW:

the instability of ”spurious ghost” is power low (sets in at zeq for 2−1R)

matter/metric perturbations very close to ΛCDM ones Dirian et al. [1403.6068]

why? background evolves to wDE < −1: Hubble friction stabilizes pert.
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Where could non-localities come from?

Model comes from an action (+ prescriptions): class. limit of quantum theory?

(1) Difficulties of promoting the model to a quantum theory

(2) Non-localities: quantum correction to gravity effective action?

(3) Non-localities could come from RG-flow couplings in UV-completed GR
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Where could non-localities come from?

(1) Can the (linearized) action be considered a quantum action?

how to embed prescriptions on the Green functions in quantum context?

〈hµν(k)hαβ(k)〉S = massless graviton− ηµνηρσ
d(d− 1)

(
i

k2 − iε +
i

−k2 +m2 − iε

)
where iε prescription chosen in such a way to have convergent path integral

〈hµνhαβ〉S =

´
Dh . . . eiS´
DheiS

but. . . path integral does not know about interpretation of extra poles. . .

Giulia Cusin Aspects of infrared non-local modifications of General Relativity 14 / 19



Where could non-localities come from?

(2) Quantum correction to gravity effective action Γ?

non-local terms from matter and gravity loops have complex structure . . .

e.g. anomaly induced

San = −1

8

ˆ
d4x
√
−g
(
E − 2

3
2R

)
∆−1

4

[
b

(
E − 2

3
2R

)
− 2bC2

]
where

∆4 = 2
2 + 2Rµν∇µ∇ν −

2

3
R2 +

1

3
(∇µR)∇µ
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Where could non-localities come from?

(3) Non-localities could come from RG-flow couplings in UV-completed GR

e.g. Stelle theory ∼M2R+ aR2 + bC2
Maggiore [1506.06217]

if a UV asymptotically free, QCD-like situation: IR generation mass scale

non-perturbative structure IR QCD propagator: mass for gluon

IR pole a(2) ∝ 2−2: dynamical generation of a mass for conformal mode

e.g. strong IR effects EH+anomaly induced
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Summarizing

(e.g. EH +m2R2−2R , Gµν −m2
(
gµν2−1R

)T
= 0)

Recently proposed class of non-local models with appealing features:

same number of free parameters as ΛCDM

developed techniques to deal with non-localities

cosmological perturbations stable

models statistically equivalent to ΛCDM

Open questions:

low energy classical EFT. . .

which is the underlying fundamental quantum field theory?

which is the quantum origin of non-localities?
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Thank you!
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