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1. Dark energy and back-reaction of inhomogeneities.

In the context of dark energy problem (Λ being 120 orders of magnitude too

large) there has been more interest in the non-friedmannian models of the

universe which could explain the acceleration only due to inhomogeneity

(initially E. Kolb et al. astro-ph/0506354, New J. Phys. 8, 322 (2006)).

One of the strogest claims was that we are living in a spherically

symmetric void of density described by the Lemaître-Tolman-Bondi dust

spheres model (e.g. Uzan, Clarkson, Ellis (PRL, 100, 191303 (2008))

Another approach was of averaging procedure of M. Buchert (GRG 32, 105

(2000); 33, 1381 (2001)).

Recently this was challenged by S.R. Green and R.M. Wald (PRD 83,

084020 (2011); PRD 87, 124037 (2013)).

Dispute is continued: S. Szybka et al. PRD 89, 044033 (2014); M. Buchert

et al. 1507.07800.
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Inhomogeneity as dark energy.

Suppose we live in an inhomogeneous model of the Universe with the same

(small) number of parameters as a homogeneous dark energy ΛCDM

model and they both fit observations very well.

Can inhomogeneity really mimic dark energy?

Is one able to differentiate between inhomogeneity and Λ?

Simplest inhomogeneous models are spherically symmetric – they violate

the Copernican Principle (so can perhaps be toy models or describing

local inhomogeneity).

These are two complementary models:

the inhomogeneous density (dust shells) Lemaître-Tolman-Bondi (LTB)

models

the conformally flat inhomogeneous pressure (gradient of pressure shells)

Stephani models.
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Complementary spherically symmetric universes

pressure density

FRW p = p(t) ̺ = ̺(t)

LTB p = 0 (p(t)) ̺ = ̺(t, r) - nonuniform

Stephani p = p(t, r) - nonuniform ̺ = ̺(t)
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Lemaître-Tolman-Bondi Universe

– is the only spherically symmetric solution of Einstein equations for pressureless

matter (T ab = ̺uaub) and no cosmological term (G. Lemaître, Ann. Soc. Sci.

Brux. A 53, 51 (1933); R.C. Tolman, Proc. Natl. Acad. Sci., 20, 169 (1934); H.

Bondi MNRAS 107, 410 (1947))

ds2 = −dt2 +
R′2

1−K
dr2 +R2(dθ2 + sin2θdφ2) , (1)

where

R = R(t, r); R′ = ∂R/∂r; K = K(r) . (2)

The Einstein equations reduce to

Ṙ2 =
2M(r)

R
−K(r); 2M ′ = κ̺R2R′ , (3)

and are solved by
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Lemaître-Tolman-Bondi Universe

R(r, η) =
M(r)

K(r)
Φ′(η); t(r, η) = T0(r) +

M(r)

K3/2(r)
φ′(η) , (4)

where for K(r) < 0 (hyperbolic), K(r) = 0 (parabolic), and K(r) > 0 (elliptic)

appropriately (K(r) is a spatially dependent "curvature index") we have

Φ(η) = (sinh η − η; η3/6; η − sin η) . (5)

Regularity conditions:

- existence of a regular center of symmetry r = 0 – implies

R(t, 0) = Ṙ(t, 0) = 0 and M(0) = M ′(0) = K(0) = K′(0) = 0 and R′ → 1.

- hypersurfaces of constant time are orthogonal to 4-velocity and are of topology

S3 – implies the existence of a second center of symmetry r = rc (with some

‘turning value’ 0 < rtv < rc)

- a ‘shell-crossing’ singularity should be avoided – implies R′(t, r) 6= 0 except at

turning values (though it is a weak singularity - no geodesic incompletness)
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2. Conformally flat inhomogeneous pressure universes

They are the only solutions of Einstein equations for a perfect-fluid

energy-momentum tensor (T ab = (̺+ p)uaub+ pgab) which are conformally flat

gab,ST = Ω2
ST,Mηab,M (6)

and embeddable in a 5-dimensional flat space (H. Stephani Commun. Math.

Phys. 4, 167 (1967); A. Krasiński, GRG 15, 673 (1983)). The metric for their

spherically symmetric version reads as

ds2ST = − a2

ȧ2
a2

V 2

[(

V

a

)

·
]2

dt2 +
a2

V 2

[

dr2 + r2
(

dθ2 + sin2 θdϕ2
)]

, (7)

where

V (t, r) = 1 +
1

4
k(t)r2 , (8)

and (. . .)· ≡ ∂/∂t. The function a(t) plays the role of a generalized scale

factor, k(t) has the meaning of a time-dependent ”curvature index”, and r is
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Conformally flat Stephani universes

The energy density and pressure are given by

̺(t) = 3

[

ȧ2(t)

a2(t)
+

k(t)

a2(t)

]

, (9)

p(t, r) = ̺(t)











−1 +
1

3

˙̺(t)

̺(t)

[

V (t,r)
a(t)

]

[

V (t,r)
a(t)

]

·











≡ weff (t, r)̺(t) , (10)

and generalize the standard Einstein-Friedmann relations

̺(t) = 3

(

ȧ2(t)

a2(t)
+

k

a2(t)

)

, (11)

p(t) = −
(

2
ä(t)

a(t)
+

ȧ2(t)

a2(t)
+

k

a2(t)

)

(12)

to inhomogeneous models.
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Topology & singularities

Global topology still S3 ×R. The models are just specific deformations of

the de Sitter hyperboloid near the “neck circle”, but with local topology

of the constant time hypersurfaces (index k(t)) changing in time.

Usually we cut hyperboloid by either k = 1 (S3 topology), k = 0 (R3) or

k = −1 (H3) – here we have “3-in-1” – the Universe may either “open up”

or “close down”.

standard Big-Bang singularities a → 0, ̺ → ∞, p → ∞ are possible (FRW

limit).

Finite Density (FD) singularities of pressure appear at some particular

value of a radial coordinate r – in standard FRW cosmology there exist

exotic (sudden future) singularities of pressure (SFS) with finite scale factor

and energy density – they differ (MPD 2005).

There is no global equation of state - it changes from shell to shell and on

the hypersurfaces t = const.

Inhomogeneous conformally flat models of the universe – p. 11/49



Stephani universes - kinematics

Kinematic characteristics of the models:

ua;b =
1

3
Θhab − u̇aub , u̇ ≡ (u̇au̇

a)
1

2 . (13)

where u̇ is the acceleration scalar and the acceleration vector

u̇r =

{

a2

ȧ2

a2

V 2

[

(

V
a

)·
]}

,r

a2

ȧ2

a2

V 2

[

(

V
a

)·
] (14)

while the expansion scalar is the same as in FRW model, i.e.,

Θ = 3
ȧ

a
. (15)

Compare: LTB has non-zero expansion and shear.
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Comoving observers being accelerated

radial dependence of weff (r, t) is due to the radial dependence of the fluid

pressure

this means that a comoving observer does not follow a geodesic.

In fact, a comoving observer has a four-velocity with a non vanishing radial

component and move in the radial direction in addition to its movement due

to the expansion. Extra radial force pushes him out of a geodesic.
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Null geodesics and acceleration mimicking dark energy

The four-velocity and the acceleration are

uτ = − c
1

V
, u̇r = − c

V,r

V
. (16)

The components of the vector tangent to null geodesics are

kτ =
V 2

a
, kr = ±V 2

a2

√

1 − h2

r2
, kθ = 0 , kϕ = h

V 2

a2r2
, (17)

where h = const., and the plus sign in applies to a ray moving away from the

centre, while the minus sign applies to a ray moving towards the centre. The

acceleration scalar is

u̇ ≡ (u̇µu̇
µ)

1

2 =
V,r

a
=

1

2

k(t)

a(t)
r (18)

The farther away from the center, the larger the acceleration (pressure).

Theoretically one can get an effect of dark energy!
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Exact classes of inhomogeneous pressure MI and MII models.

Have been found (Da̧browski 1993, 1995)

Models I which fulfill the condition (V/a)�� = 0

Models II which fulfill the condition

(k/a)� = 0, i.e. k(τ) = −βa(τ), [β] = Mpc−1.

A subclass of Models I is given by:

a(t) =
1

γt+ δ
, k(t) =

αt+ σ

γt+ δ
, (19)

with the units of constants given by: [α] = Mpc s−1, [σ] = Mpc, [γ] = Mpc−1 s−1,

and [δ] = Mpc−1. It has an interesting Friedmann limit (when σ = δ = 0) being a

phantom-dominated model with w = −5/3 having interesting null geodesic

completness features (Fernandez-Jambrina, Lazkoz 2006). In the limit t → 0 one

has a big-rip singularity with a → ∞, ̺ → ∞, and p → ∞, while in the limit

t → ∞ one has a → 0, ̺ → ∞, and p → ∞ (though it also depends on the radial

coordinate r).
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Exact classes of inhomogeneous pressure MII models.

The subclass MII has a very simple form of the metric

ds2 = − 1

V 2
dt2 +

a2

V 2

(

dr2 + r2dΩ2
)

=
a2

V 2

[

−dτ2 + dr2 + r2dΩ2
]

, (20)

of which conformal flatness is explicit (using conformal time dt = a(τ)dτ ).

Besides, one can nicely generalise the set of the cosmological equations using a

generalised continuity equation:

H2(t) =
8πG

3
̺(t)− k(t)

a2(t)

˙̺(t) + 3
H(t)

V (t, r)
[̺(t) + p(t, r)] = 0 . (21)

In general one can introduce an arbitrary number of comoving perfect fluids, each

of them satisfying separately equation (21).
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Exact inhomogeneous pressure IIA models

A subcase of model II (from now on IIA) was proposed by Stelmach and Jakacka

(2001)) – it assumes that the standard barotropic equation of state

p(t)

c2
= w̺(t) (22)

at the center of symmetry and no exact form of the scale factor. This assumption

gives that

8πG

3c2
̺(t) = C2(τ) =

A2

a3(w+1)(t)
(A = const.) (23)

and allows to write a generalized Friedmann equation as

1

c2

(

a,t
a(t)

)2

=
A2

a3(w+1)(t)
− β

a(t)
=

8πG

3c2
[ρ+ ρinh] (24)

Alhough β shows up in the term of a fluid (domain walls pinh = −(2/3)ρinh), it

is inhomogeneity parameter which gives Friedmann limit β → 0.
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Models IIA

Similarly as in the Friedmann model, we can define critical density as

̺cr(t) =
3c2

8πG

(

a,t
a(t)

)2

=
3c2

8πG
H2 (25)

and the density parameter Ω(t) = ̺(t)/̺cr(t) which after taking t = t0 gives

1 =
A2

H2
0a

3(w+1)(t0)
− βc2

H2
0a0

≡ Ω0 +Ωinh , (26)

and so

β =
a0H

2
0

c2
(Ω0 − 1) < 0 . (27)

The effective barotropic index reads as

weff (t, r) = w +
β

4
(w + 1)a(t)r2, p(t, r) = weff (t, r)ρ(t) . (28)
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Model IIA - effective barotropic index
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The effective barotropic index weff is getting more and more negative simulating

theoretically dark energy (no observational constraints yet) for large distances

away from the center (at r = 0) and far from the big-bang singularity (at t = 0).
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Models IIA - the effective pressure

This is because even positive pressure fluids at r = 0 can give negative effective

barotropic index at r 6= 0 (β < 0) e.g.:

weff,rad(r, t) =

[

wrad +
β

4
(1 + wrad)a(t)r

2

]

=
1

3

[

1 + βa(t)r2
]

. (29)

and

prad(r, t) = weff,rad(r, t) ̺rad(t) . (30)

In particular,

weff,rad(r = 0) = wrad =
1

3
. (31)

Similarly for dust:

weff,dust(r, t) =

[

wdust +
β

4
(1 + wdust)a(t)r

2

]

=
1

4
βa(t)r2 ≤ 0 . (32)
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Models IIA - the speed of sound

Same refers to the velocity of sound cS : .

c2S(r, a) = w +

(

w +
2

3

)

β

4
ar2 = c2S(r = 0) +

(

c2S(r = 0) +
2

3

)

β

4
ar2 . (33)

For dust matter at r = 0, we get c2S,m(r, a) =
β
6 ar

2 which means not only the

pressure, but also the velocity of sound squared becomes negative for ar2 6= 0 (but

it is equal to standard fluid C2
S = w both at the Big-Bang a = 0, and center r = 0).

Same problem in standard cosmology for a dark energy component with

constant negative w.

Here we face it even for dust and similarly as for the dark energy the

problem should be addressed when considering the formation of structure.

It further affects the CMB sound horizon and acoustic oscillations.

So this effect should be extremely small (β sufficiently small).
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Models IIA - departure from standard speed of sound

The departure ∆c2S from the standard sound speed for a barotropic perfect fluid

with constant w is

∆c2S(r, a) ∝ βar2c2 ∝ −Ωβ,0
a

a0
H2

0 (a0r)
2 . (34)

The quantity H0a0r has unit of velocity and can be estimated from

H0a0r = 100h
a0r

Mpc
km/s h ≡ H0/(100km/s/Mpc). (35)

It does not become too large for the observational data which can be seen if one

plots the value of βar2/4 below (x = a/a0 = 1/(1 + z)):
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Models IIA - departure from standard speed of sound

0.0 0.2 0.4 0.6 0.8 1.0

-0.08

-0.06

-0.04

-0.02

0.00

x

Β
a
r

2 �
4

Vanishes both at the Big Bang a = 0 and today at r = 0.

Has a modification of about −9% at z ∼ 4.

At very small values of x . 10−3, we have 1
4 |β|ar2 . 10−3

Plot for Ωinh,0 = 0.68 and w ≡ w(r = 0) = −0.08.
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Exact inhomogeneous pressure model IIB

In Model IIB (Da̧browski 1993, 1995) the scale factor is of the dust-like type

a(t) = σt2/3, k(t) = −ασa(t), , (36)

([α] = (s/km)2/3Mpc−4/3, [σ] = (km/s)2/3Mpc1/3, [t] = sMpc/km) but the

equation of state at the center of symmetry is no longer barotropic:

ρ = p

(

32π2G2

3α3c8
p2 − 3

2

)

. (37)

In the limit of the inhomogeneity parameter α → 0 one obtains the Friedmann

universe. FD singularity of pressure is at r → ∞.
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3. Off-center observer position constrained by supernovae.

The luminosity distance is given by

dL =
a0(1 + z)r̂′

1 + β
4 a0r

2
0

, (38)

with an off-center observer placed at r0, θ0, φ0 as meant in the coordinate system

{t, r, θ, ϕ} of the Stephani metric. More precisely we have

dL =
(1 + z)

1− a0H2

0
Ωinh

4 r20
r̂′(Ωinh, w, r0, θ0, ϕ0, H0, θ̂

′, ϕ̂′, z) , (39)

where

r̂′ = r̂′(a) =
1

H0

∫ 1

ae

dx
√

(1− Ωinh)x1−3w + Ωinhx3
, (40)

and ae is the value of the scale factor at the moment of an emission of the light ray.
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Off-center observers

For the redshift one takes

1 + z =
a0(4− aeH

2
0Ωinhr

2
e)

ae(4− a0H2
0Ωinhr20)

, (41)

where

r2e = (r0 sin θ0 cosϕ0 + r̂′(a) sin θ̂′ cos ϕ̂′)2

+ (r0 sin θ0 sinϕ0 + r̂′(a) sin θ̂′ sin ϕ̂′)2

+ (r0 cos θ0 + r̂′(a) cos θ̂′ sin ϕ̂′)2 (42)

and θ̂′ and ϕ̂′ are the coordinates of a supernova as seen by an off-center observer

in the sky (Balcerzak, MPD, Denkiewicz 2014).

We applied Union2 557 supernovae data of Amanullah et al. (2010, ApJ, 716,

712) - we note the courtesy of M. Kowalski and U. Feindt to consult the sample.
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Off-center observers - model IIA

Best-fit values: inhomogeneity density Ωinh ∼ 0.77, center of symmetry equation

of state barotropic index w ∼ 0.093, off-center observer position Dist = 341 Mpc

(χ2 = 526).
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Off-center observers - model IIB

Non-barotropic EOS limits stronger the position of an observer. Best-fit values:

inhomogeneity parameter α = 7.31 · 10−9 (s/km)2/3Mpc−4/3, off-center

observer position Dist = 68 Mpc (χ2 = 557) (α = 0 case (dust) excluded).
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Position of the center of symmetry (inhomogeneity)- model IIA

Best fit position: declination δ = −65.75◦ and R.A. is a = 187.33◦. North

Celestial Hemisphere (left), South Celestial Hemisphere (right), Meridian line

(δ = 0) in bold. In galactic coordinates: (l, b) = (300.66◦,−2.98◦).
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Position of the center of symmetry (inhomogeneity)- model IIB

Best fit position: δ = 69.35◦, a = 8.39◦. In galactic coordinates:

(l, b) = (121.35◦, 6.53◦).
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Dipole puzzles:

Dark flow direction (Watkins et al. 2009) at (l, b) = (287± 9, 8± 6)

Dark energy dipole (Mariano et al. 2012) at (l.b) = (309,−15)

Fine structure α dipole (Webb et al. 2011) at (l, b) = (320,−11)

kSZ effect on CMB (Kashlinsky et al. 2010) at

(l, b) = (296± 13, 140± 13)

Dark flow direction (Turnball et al. 2012) at (l, b) = (319± 18, 70± 14)

Model IIA ((l, b) = (300.66◦,−2.98◦)) seems to be compatible with the

above results (Balcerzak, MPD, Denkiewicz 2014).
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4. Full observational check (supernovae, redshift drift, BAO,

CMB shift parameter) for a central observer.

The luminosity distance for a central observer r0 = 0 is (same as Friedmann)

dL = (1 + z)a0r , (43)

and the distance modulus is

µ(z) = 5 log10 dL(z) + 25. (44)

From the null geodesic equations we have (model IIA)

r = c

∫ a0

a

da
√

c2A2a1−3w − βc2a3
= r =

c

H0a0

∫ 1

a/a0

dx
√

Ω0x1−3w + (1− Ω0)x3
,

(45)

where x ≡ a/a0.
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Luminosity distance, apparent magnitude

Using the definition of redshift (57) one can rewrite (45) as

z(x) =
1

x
− 1 +

Ω0 − 1

4

[

∫ 1

a/a0

dx
√

Ω0x1−3w + (1− Ω0)x3

]2

, (46)

and so the luminosity distance (43) reads as

dL(x) =
c(1 + z)

H0

√

4[z(x) + 1− 1/x]

Ω0 − 1
. (47)
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CMB shift parameter.

The shift parameter is defined as:

R =
l′TT
1

lTT
1

, (48)

where lTT
1 – the temperature perturbation CMB spectrum multipole of the first

acoustic peak in inh. pressure model

l′TT
1 – the multipole of a reference flat standard Cold Dark Matter model. The

multipole number is related to an angular scale of the sound horizon rs at

decoupling by

θ1 =
rs
dA

∝ 1

l1
. (49)

For our Stephani model the angular diameter distance is given by

dA =
adec

V (tdec, rdec)
rdec (50)

with rdec given by (45) taken at decoupling.
Inhomogeneous conformally flat models of the universe – p. 34/49



CMB shift parameter.

Using the above, we may write that for our Stephani models the shift parameter is

R =
2cV (tdec, rdec)

H0

√
Ω0rdec

. (51)

Finally, the rescaled shift parameter is

R̄ =
H0

√
Ω0rdec

cV (tdec, rdec)
. (52)

The WMAP data gives R̄ = 1.70± 0.03 (Wang, Mukherjee 2006).
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Baryon acoustic oscillations.

One calculates the distortion of a spherical object in the sky without knowing its

true size by measuring its transverse extent using the angular diameter distance, r

r =
l

∆θ
, (53)

where l and ∆θ are the linear and angular size of an object, and its line-of-sight

extent, ∆r, using the redshift distance

∆r =
c∆t

a(t)
(54)

(see e.g. Nesseris (2006)). As a result one can define the volume distance, DV , as

D3
V = r2∆r . (55)

Eisenstein et al. (2005) gave DV (∆z = zBAO = 0.35) = 1370± 64 Mpc (an

acoustic peak for 46748 luminous red galaxies (LRG) selected from the SDSS

(Sloan Digital Sky Survey). Inhomogeneous conformally flat models of the universe – p. 36/49



Redshift drift (RD) test.

Redshift drift (Sandage 1962) test is an idea to collect data from two light cones

separated by 10-20 years to look for a change in redshift of a source as a function

of time.

There is a relation between the times of emission of light by the source τe and

τe + δτe and times of their observation at τo and τo + δτo:

∫ τo

τe

dτ

a(τ)
=

∫ τo+δτo

τe+δτe

dτ

a(τ)
, (56)

which for small δτe and δτo reads as δτe
a(τe)

= δτo
a(τo)

.
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Redshift drift in inhomogeneous pressure models.

For small δτe and δτo we expand in Taylor series

(uak
a)o = (uak

a)(r0, τ0 + δτ0) = (uak
a)(r0, τ0) +

[

∂(uak
a)

∂τ

]

(r0,τ0)

δτ0

(uak
a)e = (uak

a)(re, τe + δτe) = (uak
a)(re, τe) +

[

∂(uak
a)

∂τ

]

(re,τe)

δτe ,

where for inhomogeneous pressure models the readshift reads as

1 + z =
(uak

a)e
(uaka)O

=

V (te,re)
R(te)

V (t0,r0)
R(t0)

(57)

From the definition of the redshift drift by Sandage (1962):

δz = ze − z0 =
(uak

a)(re, τe + δτe)

(uaka)(r0, τ0 + δτ0)
− (uak

a)(re, τe)

(uaka)(r0, τ0)
, (58)
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Redshift drift in inhomogeneous pressure models.

For a general spherically symmetric Stephani metric we obtain

∂

∂τ
(uak

a) = −
(

1

a

)

�

− 1

4

(

k

a

)

�

r2 , (59)

and

δz

δτ0
=

[

(

1
a

)

� − 1
4

(

k
a

)

�

r2
]

e
[

1 + 1
4kr

2
]

e

a(τe)−

[

(

1
a

)

�

+ 1
4

(

k
a

)

�

r2
]

o
[

1 + 1
4kr

2
]

o

a(τ0)(1 + z) (60)

For the model with (k/a)· = 0 we have

δz

δτ
= − H0

1 + 1
4k(τ0)r

2
0

[

He(z)

H0
− (1 + z)

]

. (61)

Sandage-Loeb CDM formula for Ωinh → 0; He(z) = H0(1 + z)3/2, r0 → 0.
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Redshift drift - LTB voids.

Plots for 3 different LTB void models, ΛCDM, brane DGP, Cold Dark

Matter (CMD) (Quercellini et. al, 2012).

ΛCDM – the drift is positive at small redshift, but becomes negative for

z & 2.

Giant void (LTB) model mimicking dark energy - the drift is always

negative.
Inhomogeneous conformally flat models of the universe – p. 40/49



Redshift drift - inhomogeneous pressure models (r0 = 0, w = 0).
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Ωinh small - drift as in LTB and CDM models

Ωinh larger - drift as in ΛCDM models (first positive, then negative), e.g.

for Ωinh = 0.61 drift is positive for z ∈ (0, 0.34).

Ωinh very large - drift positive (Ωinh = 0.99 up to z = 17; Ωinh = 1

(inhomogeneity-domination) z > 0) and δz
δt = H0

z
2 which means that the

drift grows linearly with redshift.
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Inhomogeneous pressure - combined tests (SNIa, RD, BAO, shift parameter)
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Inhomogeneous pressure - combined tests: results and improvements

Stephani model with w = weff (r = 0) ≡ w1 fits well the data for the

SNIa, redshift drift, and BAO (contours overlap at 1σ CL).

However, it does not fit the data for the shift parameter features of ΛCDM

model.

Possible solution: replace constant barotropic index w by w(a) and assume

that w(a) suddenly changes somewhere between z = 5 and zdec, and then

remains constant.

Now we have

H2(a) = H2
0

[

Ω0 f(a) + Ωinh,0
a0
a

]

, (62)

where

̺(a) = ̺0 exp

[

−3

∫ a

a0

da′
1 + w(a′)

a′

]

≡ ̺0 f(a) , (63)

wch for w(a) = wconst. gives standard ρ = ρ0(a/a0)
−3(w+1).
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Inhomogeneous pressure models - w(a) parametrization

An example of a barotropic index parametrization w(a) which can fit the data is:

w(a) = w1 +
w2

2
(1 + tanh[λ(atr − a)]) . (64)

where w, w0, λ, and atr are constants. Here: λ = 40, atr = 0.08, w1 = −0.08,

w2 = 0.4 and Ωinh = 0.68, ztr ∼ 10.49.
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Inhomogeneous pressure models - combined tests for w(a)

This model fits very well the data for the SNIa, redshift drift, shift parameter, and

BAO (contours overlap at 1σ CL).
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Advantages for future studies

The general inhomogeneous pressure metric

ds2 = − a2

ȧ2
a2

V 2

[(

V

a

)

·
]2

dt2 +
a2

V 2

[

dx2 + dy2 + dz2
]

,(65)

V (t, x, y, z) = 1 +
1

4
k(t)

{

[x− x0(t)]
2
+ [y − y0(t)]

2
+ [z − z0(t)]

2
}

,

with x0, y0, z0 being arbitrary functions of time is just a generalization of both the

FRW and spherically symmetric Stephani (7) metrics in isotropic coordinates.

It is fully inhomogeneous - no symmetries acting on spacetime.

It is still conformally flat (Weyl tensor Cabcd = 0).

Can be made ”density inhomogeneized” taking x0(t) → x0(t, x, y, z) etc.

Energy conditions studied by MPD (PRD 71, 103505 (2005)) and can be

fulfilled according to Green and Wald assumptions (PRD 87, 124037, 2013)

- MPD, A. Balcerzak, J. Ostrowski - in progress.
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5. Conclusions

Complementary to LTB cosmologies which can theoretically drive

acceleration.

Sole application of 557 Union2 supernovae data restricts the position of

non-centrally placed observers. Best fit values are: Dist = 341Mpc

(model IIA) with inhomogeneity density Ωinh = 0.77 (model IIA) and

Dist = 68Mpc with inhomogeneity parameter α = 7.31 · 10−9

(s/km)2/3Mpc−4/3 (model IIB).

Gives a dipole which is directed at (l, b) = (300.66◦,−2.98◦) (model IIA)

and (l, b) = (121.35◦, 6.53◦) (model IIB) and can be compared (if aligned)

with other dipoles (dark energy, dark flow, varying-α dipole, etc.)

Stephani model fits well the data for SNIa, redshift drift, shift parameter,

and BAO provided a specific parametrization for w = w(a) is applied and

the inhomogeneity is small 1
4 |β|ar2 . 10−3 for large redshift z . 1000 .

Due to its conformal flatness and possible modelling of a full spacetime

inhomogeneity it can perhaps be applied to test Green and Wald theorem.
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Thank You!
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Physical interpretation of inhomogeneous pressure models

A fluid with spatially varying equation of state (spatially varying vacuum

energy like Λ) is assumed which gives a nongravitational force in the

Universe (which manifests as non-zero acceleration of comoving

observers).

Inhomogeneous pressure models can be considered as a kind of interior of a

TOV exotic star filled with matter like generalized (anti)-Chaplygin gas

p = ±A2/̺α (A = const.) (e.g. Kamenschchik et al. 2004, 2008).

In these models there exists a static spherically symmetric configuration in

which the central pressure at r = 0 was constant, while on some shell of

constant radius rs it became minus infinity (which is an analogue of a FD

singularity). Everywhere between r = 0 and r = rs, the pressure is lower

than at the center, so that the particles are accelerated away which is exactly

the effect which is present in the inhomogeneous pressure model.

There is also an ideal gas interpretation of these models (Sussmann 2000).
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