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Abstract

An ultraluminous X-ray source M82 X-2 was recently identified as an X-ray pulsar accreting at
a super-Eddington rate. In this object, the accretion disc outside the magnetosphere probably still
remains below the local Eddington limit but its structure may be affected by the radiation of the
central source (accretion column) that together with magnetic torques shifts the centrifugal balance
in the inner parts of the accretion disc thus increasing its surface density and thickness. Magneto-
spheric radius is also affected by the structure of the disc and can be calculated self-consistently in
the framework of our model. We consider the structure of such a disc and corrections to the mag-
netospheric radius. For large magnetic moments (surface magnetic field B > 1013G), the structure
of the accretion disc is very close to the standard accretion disc model [1], and the magnetospheric
radius is proportional to the classical Alfvén radius with a constant coefficient. A small magnetic
field, on the other hand, allows the disc to penetrate further inside the magnetosphere, but the
radius of the magnetosphere becomes relatively larger with respect to the classical Alfvén radius.
The inner disc parts in this case show sub-Keplerian rotation (slower by a factor of about 0.75).

1 Introduction

Usually, magnetospheric accretion upon neutron stars in binary systems is proposed to run through
a thin accretion disc surrounding a nearly-dipole magnetosphere. At low mass accretion rates, this
approximation may be violated, and the disc should be replaced by a quasi-spherical envelope [2]. At
the high mass accretion rates close to or exceeding the Eddington limit, the disc again should become
thick. Until recently, the discs in all the X-ray pulsars were well understood as thin, gas-pressure
dominated, and nearly Keplerian, and trimmed from the inside by the magnetospheric radius.

In the recent work [3], pulsations with a period P ' 1.37 s were found from the ultraluminous
X-ray source M82 X-2, that clearly identifies this object as a neutron star rather than a black hole.
The high luminosity of this source (∼ 1040 ergs−1) is well in excess of the Eddington limit for a neutron
star that clearly points to importance of radiation pressure, as well as disc thickness, in this source.
Most of the radiation is released close to the surface of the neutron star, in the accretion column,
that can in principle emit much more than the Eddington luminosity due to geometric reasons and
transparency of a strongly magnetized plasma [4]. The accretion disc, at the same time, becomes
illuminated by a radiation flux exceeding the local Eddington limit and thus its structure as well as
the position of the disc-magnetosphere interface should be affected significantly.

Both radiation from the central source (accretion column) and the magnetic field of the neutron
star create in the disc a radial pressure gradient, violating one of the basic assumptions of the standard
disc theory. In this work we discuss mainly the boundary of the disc Rin. The disc boundary is often
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described by Alfvénic radius RA, the radius where the ram pressure is equal to the magnetic pressure.
In reality there is a correction factor of ξ ∼ 1 that depends on the disc geometry:

Rin = ξRA = ξ

(
µ2

2Ṁ
√

2GM

)2/7

, (1)

where µ is the magnetic moment of the neutron star with mass M , Ṁ is the accretion rate. Analytical
models predict ξ from 0.5 [5] to > 1 [6], simulations argue for ξ ∼ 0.5.

One of the most important ingredients of the model, neutron star magnetic field, is still unknown.
There is a very wide range of the magnetic fields proposed in the literature: from very small up
to magnetar magnetic field B = 1014G [7]. The latter has the advantage of explaining the highly
super-Eddington luminosity of the object.

Besides the magnetic field value, it is very important to understand the interaction of the magnetic
field with the accretion disc. The models considering interaction of the magnetosphere with the disc
can be divided into two main classes: magnetically threaded discs (see [5] and [8]) and the models
with open magnetic field lines (see [9]). It was shown recently [10] that the stellar magnetic field
cannot thread the disc but is rather pushed out very quickly. In our model we consider a disc with
only a small area at the boundary where the matter interacts with the magnetic field and flows to the
neutron star along the magnetic field lines.

2 The model

We start from the equations of hydrodynamics plus viscosity prescription from [1]. The Euler equation
in the vector form takes the form:

∂v

∂t
+ (v∇)v = −1

ρ
∇p−∇ϕ. (2)

In steady-state, the radial component of this equation in cylindrical coordinate system can be rewritten
as:

vR
∂vR
∂R
−
v2
φ

R
= −1

ρ

∂p

∂R
− GM

R2
. (3)

Here p is the pressure, vφ = ΩR is the rotation velocity, vR is the radial velocity, and Ω is the disc
angular velocity. Radiation pressure of the central source shifts the radial force equilibrium of the
Keplerian disc (Ω2R = GM/R2) and the radial pressure gradient cannot be neglected in the inner
parts of the disc. The disc angular velocity becomes non-Keplerian, and the ratio of the disc angular
velocity to the Keplerian value ω = Ω/ΩK should be a function of radius. Because of the strong
radiation pressure at the boundary, the inner parts of the disc are additionally decelerated in the
radial direction and their radial velocity is smaller than that in the standard disc, so we neglect the
first term, quadratic in vR, on the left hand side of eq. (3).

Integrating eq. (3) over the vertical coordinate z yields:

Ω2R =
1

Σ

∂Π

∂R
+
GM

R2
. (4)

Here Π =
∫H
−H pdz is the vertically integrated pressure at the inner face of the disc, Σ =

∫H
−H ρdz is

the surface density, and H is the disc thickness. At the boundary internal disc pressure (prad + pgas)
is balanced with the external pressure of the radiation source prad = L/4πR2c and the magnetic field
pressure pmag = µ2/8πR6. Note that the radiation pressure can be even higher by a factor up to two
due to reflection of photons, depending on the scattering albedo of the disc. Thus vertically integrated
pressure at Rin is Π = (prad + pmag)H.

The vertical disk structure (see [11] in more detail) gives the relation between the central pressure
pc and the central density ρc as:

pc = ρc
GM

R3

H2

4
. (5)

28th Texas Symposium on Relativistic Astrophysics
Geneva, Switzerland – December 13-18, 2015



3

Eq. (5) provides us with the thickness of the disc:

H =

√
5Π

Σ

R3

GM
. (6)

Following the standard accretion disc theory we assume alpha-prescription:

Wrφ = αΠ, (7)

where Wrφ is the rφ-component of the vertically integrated viscous stress tensor. Under this assump-
tion the angular momentum conservation equation is:

Ṁ
d(ΩR2)

dR
=

d

dR
(2πR2Wrφ). (8)

As in [1], we assume that the energy released in the accretion disc is radiated locally from its surface.
In this case, the local energy release will be coupled to the radiation emitted from the disc surface, on
one side, and to the velocity gradient in the disc, on the other, allowing to link the rotation law of the
disc ω(R) with the vertically-integrated pressure. The pressure is itself linked to the energy release
rate by the vertical radiation diffusion equation

F = −D∇ε, (9)

where F is the vertical energy flux, ε = aT 4 is the radiation energy density and D is the diffusion
coefficient. Local energy dissipation rate:

dF

dz
= αpR

dΩ

dR
, (10)

where p is the total (gas+radiation) pressure:

p = pgas + prad = 2nkT +
aT 4

3
. (11)

Solving equations (9) and (10) one obtains the following relation between the surface temperature Ts
and the central temperature Tc:

T 4
s = T 4

c −
73

120

1

a

ακρcpcRH
2

c
, (12)

here κ is the opacity. Assuming that the surface temperature Ts equals to the effective temperature,

2σSBT
4
eff = αΠR

dΩ

dR
, (13)

we get an expression for the central disc temperature:

T 4
c = R

dΩ

dR

Wrφ

σSB

[
219

512
κΣ + 1

]
. (14)

This expression differs from a similar equation for the standard disc (see eq. 2.24 in [1]) because we
account for the vertical structure of the disc.

The central pressure expresed as a sum of radiation and gas pressure together with the alpha
prescription gives us:

15

16

Wrφ

αH
=
aT 4

c

3
+

3

2

ΣkTc
Hmp

. (15)

Close to the disc boundary, the infalling matter has the angular velocity that differs from the angular
velocity of the neutron star and the magnetosphere thus should lose a certain amount of excess angular
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momentum. We assume that the excess angular momentum is removed by the magnetic and radiation
stresses at the magnetospheric boundary:

Ṁ(Ωns − Ωin)R2
in = kt

µ2Hin

R4
in

− LΩin

c2
HinRin, (16)

where kt = Bφ/Bz is the ratio of magnetic field components. The second boundary condition is for
the pressure at the inner boundary of the disc that should be balanced by the magnetic and radiation
pressure:

W in
rφ = 2α

(
µ2Hin

8πR6
in

+
LHin

4πR2
inc

)
. (17)

3 Results and discussion

We are interested in the disc boundary Rin or in other words in parameter ξ = Rin/RA. In each
simulation, we used the following input parameters aimed to reproduce the conditions in M82 X-2:
neutron star rotation period P = 1.37 s, luminosity L = 1040 ergs−1 with the efficiency η = 0.1 and
the neutron star magnetic moment between 1029 and 1032G cm3. For determining the disc boundary
we used the shooting method: first we assume some Rin, using it we calculate Ωin with the boundary
condition (16) and then calculate the whole structure of the disc from the outside. We then vary Rin

until the angular velocity at the boundary is equal to Ωin calculated from the boundary condition.
Our results are given in Fig. 1. The dependence of the magnetospheric radius on the magnetic

moment is shown by circles. For high magnetic fields (µ > 5 × 1030 G cm3), our results are in
agreement with the other simulations of the standard disc, but for a lower magnetic field, the disc
boundary approaches the Alfvénic radius. The dependence of the non-Keplerianity Ω/ΩK on the
magnetic moment shown by the triangles demonstrates the same behaviour: neutron stars with high
magnetic fields have nearly Keplerian discs Ω(Rin) > 0.95 while decreasing magnetic field leads to a
significant non-Keplerianity.

In Fig. 2, the thickness of the disc is given as a function of the radial coordinate. The standard
disc theory predictions (with the zero torque at the inner boundary) are shown by the blue lines, our
results are shown by the red lines. Different plots correspond to different magnetic field strengths.
Here we neglect the gas pressure inside the disc because the luminosity is close to the Eddington limit.
Gas pressure may become important due to matter accumulation in the disc. It is also important
at smaller mass accretion rates and larger magnetic fields, when the disc is cooler. The effect of the
gas pressure is discussed further in [11]. Our model conforms with the standard disc far from the
boundary, but near the boundary our solution corresponds to a thicker disc. For the strong magnetic
field, the disc is still thin, but when the magnetic field decreases it becomes thicker. The solution
presented in the last two plots, where the disc is thick, i.e. H/R ∼ 1, should be taken with the grain
of salt, as the standard disc theory is not applicable when the flux locally exceeds the Eddington limit.
In this case, we should take into account outflows and other effects such as radial advection [12]. To
reproduce the properties of M82 X-2, the magnetic field of the neutron star in M82 X-2 should be
B > 1013G or higher to remain below the local Eddington limit outside the magnetospheric boundary.
This conclusion is consistent with the previous fundings by [4, 7] that this source hosts a magnetar.
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Figure 1: Magnetospheric radius (circles) and non-Keplerianity (triangles) as functions of the magnetic
moment.
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Figure 2: The thicknesses of the disc are shown as functions of radial coordinate. The standard disc
theory predictions are shown by the blue lines, our results are shown by the red lines.
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