The First G-APD Cherenkov Telescope: Status and Results

G Hughes for the FACT Collaboration
The FACT Collaboration

A: ETH Zurich
B: Universität Würzburg
C: Technische Universität Dortmund
D: University of Geneva

S. Müllera, M. L. Ahnena, M. Balbob, M. Bergmannc, A. Bilanda, T. Bretza,1, K. A. Brügged, J. Bussd, D. Dornerc, S. Einecked, J. Freiwaldd, C. Hempflingc, D. Hildebranda, G. Hughesa, W. Lustermanna, K. Mannheimc, K. Meierc, D. Neisea, A. Neronovb, M. Nöthed, A.-K. Overkempingd, A. Paravacc, F. Paussa, W. Rhoded, F. Temmed, J. Thaeled, S. Toscanob, P. Voglera, R. Walterb, and A. Wilbertc
Transition to Silicon

- Can Silicon Photo-Multipliers (Geiger-Mode Avalanche PhotoDiodes / SiPM) be used in gamma-ray astronomy?
 - They are more robust
 - Their size enables the use of new dual mirror designs

- First G-APD Cherenkov Telescope
G-APDs (SiPM)

- Hamamatsu MPPC S10362-33-50C
- Comparison with Photo-Multiplier Tubes:
 - Cheaper than PMTs
 - Similar detection efficiencies
 - Do not suffer significant ageing (Moonlight)
 - Can be read out quickly
 - Voltages can be much lower (100V compare to 1000V for PMTs)
 - Dark Count < Night Sky Background
- Astroparticle community knows how to handle cross-talk and after pulsing

However the gain is **temperature dependent** and **ambient light** will result in voltage drop (due to serial resistors) ⇒ **Feedback system required**
FACT Camera

- 1440 G-APDs (SiPM) and readout channels
 Hamamatsu MPPC S10362-33-50C
- Active area of 3×3 mm²
FACT Telescope

- 2 km a.s.l La Palma
- Old HEGRA mount
- Mirror area 9.51 m²
- 30 Reconditioned facets
- Davies-Cotton optics
Feedback

- Breakdown Voltage depends linearly on temperature
- Cross talk vs PDE: Both depend on Temp/Over-Voltage
- As well as Single PE resolution
- Over-Voltage of 1.4 V used

- 320 bias voltage channels
 - Max Voltage 90 V
 - Max Current 4 mA
 - $\Delta V \sim 22 \text{ mV}$
 - $\Delta I \sim 1.2 \mu\text{A}$

- Temperature read every 15s
- Current read every second
Feedback: Dark Count Spectra

1428 Pixels, 1 year data, \(\Delta T \sim 25^\circ C \)

Fit: Modified Erlang Dist.

Lid Closed
10K triggers @ 77 Hz
> 2x per night
Stability: Ratescans

- Ratescans are a very useful tool.
- Cosmic ray rate shows no dependence on temperature, NSB or sensor age.
- Cosmic ray rate does depend on night sky quality.
Collected Charges

dark night ~ 5µA

integrating over time, divide by dark-night DC

→ collected same charge as in >15’000 hours dark night obs.

dark noise: ~0.5µA (laboratory)

→ collected same charge as in >150’000 hours in laboratory
(for 1440 sensors in parallel)

A. Biland et al (FACT collaboration)
Proceedings of 34th ICRC 2015
New Alignment Methods

- Mirror alignment campaign
 May 2014

- Two methods used:
 1. New Bokeh method
 2. Raster Scan Method
Stability: Muons

- Single muons from Cosmic ray interactions form rings in the focal plane
- Easy characterised and have a small time spread
- Therefore they can be used to measure:
 - Point Spread Function
 - Time Spread
 - Total detector throughput

M. Nöthe et al (FACT collaboration)
Proceedings of 34th ICRC 2015
Showers can still be seen whilst point directly at the moon!
Remote Observations

http://fact-project.org/smartfact
Quick Look Analysis

http://fact-project.org/monitoring/
Sources

D. Dorner et al (FACT collaboration)
Gamma-2012: AIP Conf.Proc.1505

F. Temme, S. Einecke et al (FACT collaboration)
Proceedings of 34th ICRC 2015

Crab Nebula
Monitoring datasets

- Comparison Whipple Mrk 421
 - 14 years: 878 hours

- FACT now has comparable dataset
 - 4 years of operation
 - Mrk 421: 820+ hrs
 - Mrk 501: 1290+ hrs
Monitoring

Mrk 421

Flare alert (ATel #6268)

Mrk 501
Mrk 421 in 2012

Preliminary
Comparison to MAGIC: Mrk 501

- FACT Mrk 501 data taking started in May 2012 during MWL campaign
- On the 9th June a 10 Crab Unit flare (>1TeV) was observed
- **Excellent agreement between MAGIC and FACT data**

 Correlation plot linear fit gives χ^2/dof of 10.4/10

- Also in the previous session Mrk 501 2014 data also shown as part of MWL campaign

 J. Becerra
Correlation Mrk 501

- Correlation FACT nightly rate to the nearest Swift-XRT rate taken within 1 day
- FACT: $<40^\circ$ Zenith and Low threshold (No to moderate Moon)
- Z-colour is the MJD of the correlation
Correlation Mrk 421

- Correlation FACT nightly rate to the nearest Swift-XRT rate taken within 1 day
- FACT: $<40^\circ$ Zenith and Low threshold (No to moderate Moon)
- Z-colour is the MJD of the correlation

![Graph of Mrk 421 correlation](image)

Correlation Facts

- XRT log10(rate [s$^{-1}$])
- FACT log10(excess rate [hr$^{-1}$])

Graphs:

- XRT vs. FACT correlation
- DOF vs. Time lag [days]

Preliminary data presented.
Conclusion

- FACT has been operational since October 2011
- Proven to be extremely stable in real life conditions
- Feedback enables uniform data taking Ratescans and Muons
- Crab Spectrum
- Large un-biased data sets monitoring for the community
- Data shows excellent agreement with MAGIC

- G-APDs (SiPMs) are a viable option for Cherenkov Telescopes