Disrupted globular clusters explain gamma-ray excess in the Galactic Center

Bence Kocsis
IAS → Eotvos University, Budapest
ERC Starting Grant Project Leader

with Tim Brandt (IAS)
Uncovering a gamma-ray excess at the galactic center

Unprocessed map of 1.0 to 3.16 GeV gamma rays

Known sources removed

Daylan et al. (2014)
• Dark matter annihilation?
• Young pulsars?
• Cosmic ray outbursts?
• Background systematics?
• Millisecond pulsars?
Millisecond pulsars?

• How do we explain the observed morphology?
• Why aren’t the millisecond pulsar progenitors there?
• Shouldn’t we have seen individual pulsars?
• Is the spectrum consistent?
Normal pulsars

- $P \sim 1$ sec
- $B \sim 10^{12}$ G
- mostly single
- $t_{\text{spindown}} \sim 10^5$ yr

Crab pulsar, *Chandra* (X-ray)
Normal pulsars
- $P \sim 1$ sec
- $B \sim 10^{12}$ G
- mostly single
- $t_{\text{spindown}} \sim 10^5$ yr

Millisecond pulsars
- $P \sim 10$ ms
- $B \sim 10^8$ G
- Mostly in binaries
- $t_{\text{spindown}} \sim 10^{10}$ yr

Crab pulsar, *Chandra* (X-ray)
Origin of millisecond pulsars

- “recycled pulsars” spun up by mass transfer
- accretion phase: 10^6 yr
 low mass X-ray binary (LMXB)
- MSPs, LMXBs
 much more common in globular clusters
Origin of millisecond pulsars

• “recycled pulsars” spun up by mass transfer

• accretion phase: 10^6 yr
low mass X-ray binary (LMXB)

• MSPs, LMXBs
much more common in globular clusters

47 Tuc in X-rays, Bogdanov et al. (2006)
GCs are dynamical systems with long but finite lifetimes
Most of the primordial GCs may be gone

- Evaporation
- Dynamical friction
- Tidal disruption
The clusters may be gone but the stars and MSPs remain.

Where are they now?
• Utilize evolutionary models which recover current GC properties
 Gneden, Ostriker, Tremaine (2014)

• Scale L_γ/M_* of extant GCs

• Zero free parameters!

![Graph showing mass deposited by disrupted GCs](image_url)
Results: 2GeV Flux within aperture of radius Ψ
Results: 2GeV Flux within aperture of radius Ψ
Results: 2GeV Surface Brightness

Projected Distance (kpc)

$E^2 \frac{dN}{dE}$ (GeV/cm2/s/sr)

Daylan+ 2014
Hooper+ 2013
Calore+ 2015

Ψ (degrees)
Results: 2GeV Surface Brightness

Projected Distance (kpc)

$E^2 \frac{dN}{dE}$ (GeV/cm2/s/sr)

- Disrupted GCs
- Daylan+ 2014
- Hooper+ 2013
- Calore+ 2015
Should we have seen individual MSPs at 2 GeV?
Should we have seen individual MSPs at 2 GeV?

Based on known pulsars in the galactic field: two *could* have been seen in the GC
But these 2 have large systematic distance errors. → OK if we see none at 2 GeV
Is the spectrum consistent?

- Yes! 1GeV – 20 GeV
- Slight (2σ) discrepancy at <800 GeV
 - Note: correlated errors
 - low signal-to-noise
 - biases/confusion not included
Millisecond pulsars?

✓ How do we explain the observed morphology?
 Disrupted globular clusters

✓ Why aren’t the millisecond pulsar progenitors there?
 Density is no longer high enough to form new LMXBs

✓ Shouldn’t we have seen individual pulsars?
 Not with the latest estimates of dispersion measures

✓ Is the spectrum consistent?
 Less than 2σ discrepancy
Other evidence

Bulge chemistry
- 1% of bulge stars show Al, N enhancements
- ½ of globular cluster stars show Al, N enhancements
- \Rightarrow 2% of bulge mass from GCs?

Flux statistics
- Of Fermi excess looks like unresolved point sources
 - Diffuse contribution is zero

(Lee et al. 2015, see also Bartels et al. 2015)
How can we confirm this scenario?

• Find the MSPs within ~ 1 kpc
 • high-radio frequency radio surveys
 • pulsing X-rays, gamma-rays

• Further chemical evidence of dissolved GCs?
How can we confirm this scenario?

• Find the MSPs within ~ 1 kpc
 • high-radio frequency radio surveys
 • pulsing X-rays, gamma-rays

• Further chemical evidence of dissolved GCs?

Is the Fermi excess the first direct evidence for globular cluster destruction?