

Signs of magnetic acceleration and multi-zone emission in GRB080825C

Elena Moretti & Magnus Axelsson On behalf of the Fermi-LAT collaboration

The Idea

The LAT GRB catalog (Ackermann et al. 2013) shows that the most fluent GRBs deviate from a Band only spectral modelling.

ermi

Gamma-ray Space Telescope

- Do all bursts deviate from the Band function?
- Are we limited by the statistic to detect this deviation in the less fluent bursts?
- Can we investigate deviations with lower significance of the extracomponents?

	Fluen 19 10^{-7} erg/cm ²)	Dest	θ deg
J0724B	$4665 \frac{-76}{+78}$	Band with exponential cutoff	4.
090902B	4058 + 24 + 25	Comptonized $+$ Power law	50.
090926A	$2225 + \frac{-48}{+50}$	Band + Power law with exponential cutoff	48.
080916C	1795 + 39 + 41	Band + Power law	48.
090323	1528 + 44	Band	57.
100728A	$1293 \pm 27 \\ \pm 28$	Comptonized	59.
100414A	1098 ± 27	Comptonized $+$ Power law	69.
090626	927 ± 16	Logarithmic parabola	18.
1. 721A	876 - 28	Logarithmic parabola	
090328	817 ± 33 + 34	B	64.
100116A	$^{+34}_{-25}$	Band	26.
1107094	518 21	Band	53
080825C	017 $^{-20}$ $^{+21}$ $^{-15}$	Band	60.
091003	$^{+10}_{461+15}$	Band	21.
110120A	422 + 22 + 23	Band	12.
10328B	$417 + \frac{37}{47}$	Comptonized	31.
110731A	379 ± 21	Band + Power law	3.
090510	360 + 16	Band + Power law	13.
091031	288 + 10	Band	23.
110428A	255 + 10	Band	34.
090720B	$^{+10}_{185+13}$	Band	56.
100225A	$^{+13}_{101+7}$	Band	55.
091208B	$93_{\pm 13}^{-11}$	Band	55.
100620A	$^{+13}_{84\pm 9}$	Band	24.
081006	56^{+9}_{+10}	Band	1
10529A	$^{+10}_{49+6}$	Band	3
100.25A	$46_{\pm 4}^{\pm 4}$	Band	7.
090531B	$38^{\pm 3}_{\pm 5}$	Comptonized	21.
081024B	30^{+55}_{+6}	Band	18.

NOTE.—We exclude from this table all GRBs outside the nominal LAT FOV (with $\theta > 70^{\circ}$) and GRB 101014A, which was detected too close to the Earth limb.

The Implementation & Analysis

Gamma-rav

pace Telescope

- GRB 080825C is a moderately weak burst that did not show any deviation >4σ from the Band function in Abdo et al. 2009.
- We add the LLE (LAT Low Energy) events to model the gaping region between GBM and LAT from 30 to 100 MeV.
- Data used: Nal 9 & 10 and BGO 0 & 1 (same as in Abdo et al. 2009); LLE (P7), P7REP_transient (new datasets).
- We use the same time bins as in Abdo et al. 2009.
- We lower the significance threshold, and investigate extra components above 3σ.

Results

Gamma-ray

- An extra component is found with 3.5σ significance in the first and fourth time bins.
- It is not significant in the time bins between, but the recovered parameters follow the same relation throughout the burst.
- The simplest model consistent throughout the burst is Band+BB.
- The first peak can not be modelled with a BB as it is wider.
- The second peak is likely wider than a BB peak, but if modelled with a Band function the parameters can not be fully constrained.

Time evolution of the Band and BB

Time	lpha	β	E_p^a	N^b_{Band}	kT^a	N^b_{BB}	N^b_{PL}
0.0-2.69	$-0.56\substack{+0.08\\-0.07}$	$-2.6^{+0.1}_{-0.2}$	$203^{+31}_{-28}\\208^{+22}_{-19}$	$0.10\substack{+0.01\\-0.01}$	219^{+62}_{-36}	15^{+3}_{-3}	-
2.69-4.74	$-0.46\substack{+0.06\\-0.07}$	$-2.6_{-0.2}$ $-2.43_{-0.07}^{+0.06}$	208^{+22}_{-19}	$0.14\substack{+0.01\\-0.01}$	$\begin{array}{r} 219_{-36} \\ 632_{-221}^{+208} \end{array}$	11^{+8}_{-7}	-
4.74-12.93	$-0.74^{+0.05}$	$-2.46^{+0.07}$	183^{+19}_{-17}	$0.14_{-0.01} \\ 0.046_{-0.003}^{+0.004}$	1191^{+497}_{-332}	'-4	-
12.93 - 25.22	$-0.64^{+0.05}$	$-2.42^{+0.06}$	$151^{+\bar{1}\dot{3}}_{-13}$	$0.050\substack{+0.004\\-0.004}$	4613^{+920}_{-508}	$6.0^{+2.0}_{-1.5}$	_
25.22 - 35.46	$-1.94\substack{+0.03\\+0.04}$	-		_	-	-	$8.3^{+1.0}_{-1.4}$

 ${}^{a} \mathrm{keV}$ ${}^{b} ph \ cm^{-2} \ s^{-1} \ keV^{-1}$

Moretti, Axelsson 2015 subm. MNRAS

Interpretation (1)

Gamma-rav

pace Telescope

Assuming that at least one component is related with the photosphere, there are two scenarios:

(1) One zone emission at the photospheric radius:

- X Double-peaked spectra can be produced by subphotospheric emission, but the evolution of the second peak does not match predictions (Keren & Levinson 2014).
- If there is no subphotospheric dissipation, the temperature of the BB component is too high for photospheric emission. Possibly inverse Compton component from thermal/MeV photons scattering on accelerated electrons? (Pe'er et al. 2006, Vurm et al. 2014).

➔ Not a likely scenario!

Interpretation (2)

2) Multi-zone emission:

Gamma-ray

- The Band is the photospheric emission:
 - thermal acceleration;
 - the BB component could be from synchrotron (internal shocks) or inverse Compton (Beloborodov et al. 2014; unlikely given the peak energy and the temporal behaviour).
- The BB is the photospheric emission:
 - acceleration from magnetic reconnection (kT too high for thermal acceleration; Bégué & Pe'er 2015);
 - the Band component could be synchrotron emission from electrons accelerated via reconnection (as the ICMART scenario of Gao & Zhang 2015).

→ Most likely scenario if BB is photospheric!

Conclusions

Gamma-ray pace Telescope

- Evidence for a second peak at energies above the previously reported Band component, present at the level of 3.5σ.
- The peak energy of the extra/component increases throughout the emission episode, from a few hundred keV to several MeV.
- The results point to a 2 zone emission model disfavouring a single radius origin of the emission.
 - The high energy of the second peak points to magnetic dissipation in the photospheric emission scenario.

We checked we had the same results with and without LAT>100 MeV data.

Gamma-ray

- We tested different spectral models but the simplest and consistent throughout the whole burst is Band+BB.
- We checked the width of the second peak by fitting the IV time bin with 2 Band functions. The peak is wider than a BB peak, but the second Band could not be fully constrained (alpha had to be fixed).
- We check the effect of a systematic error on the effective area, but it resulted in a marginal change of the significance of the extra-component.
- Effects on the GBM energy dispersion and calibration are likely below the statistical errors (from communications with GBM team).