A direct measurement of tomographic lensing power spectra from CFHTLenS

(in press at MNRAS; arXiv1509.04071)

Fabian Köhlinger

Collaborators: M. Viola, W. Valkenburg, B. Joachimi, H. Hoekstra, K. Kuijken

Texas Symposium 2015, Geneva

17 December 2015
I. Introduction
Cosmological model

- Dark Matter: 26.8%
- Dark Energy: 68.2%
- Baryons: 4.9%

Springel et al. (2006)
Lensing statistic:

shear-shear
(a.k.a. cosmic shear)
Weak lensing: Future

- **CFHTLenS**
 - 10^2 deg2
 - 17 gals/arcmin2
 - $z_m = 0.75$

- **RCSLenS**
 - 6 gals/arcmin2
 - $z_m = 0.60$

- **KiDS**
 - 10^3 deg2
 - 9 gals/arcmin2
 - $z_m = 0.70$

- **HSC**
 - 20 gals/arcmin2
 - $z_m = 1.00$

- **DES**
 - 8 gals/arcmin2
 - $z_m = 0.65$

- **Euclid**
 - 10^4 deg2
 - 30 gals/arcmin2
 - $z_m = 0.90$

- **LSST**
 - 31 gals/arcmin2
 - $Z_m = 1.00$

- **completed**
- **ongoing**
- **> 2020**
Weak Lensing: Challenges

1) Accurate photometric redshifts

2) Shape noise:

“The bigger (deeper) the survey the smaller the uncertainties!”

3) Blending (!)
II. Cosmic Shear
Lensing of LSS:

Theory:

\[C_{\mu \nu}^{EE}(\ell) = \frac{9 \Omega_m^2 H_0^4}{4 c^4} \int_0^{\chi_H} d\chi \frac{g_\mu(\chi) g_\nu(\chi)}{a^2(\chi)} P_\delta \left(k = \frac{\ell}{f_K(\chi)} ; \chi \right) \]

measurements:

correlation functions \iff power spectra

“geometry”

“physics”
Baryons & neutrinos:

AGN feedback from OWLS after Harnois-Déraps et al. (2015)

3 degenerate, massive neutrinos with $\Sigma m_\nu = 0.18$ eV

integration over lensing kernel

AGN feedback from OWLS after Harnois-Déraps et al. (2015)

3 degenerate, massive neutrinos with $\Sigma m_\nu = 0.18$ eV
The CFHTLenS case:

\[\sim 154 \text{ deg}^2 \sim 115 \text{ deg}^2 \]

\[n_{\text{gal}} = 17 \text{ gals/arcmin}^2 \]

two redshift slices:

\[z_1: 0.50 < z \leq 0.85 \]
\[z_2: 0.85 < z \leq 1.30 \]

minimize intrinsic alignments

!!! PUBLIC data !!!

Erben et al. (2012)
Results: Multipole Space

quadratic estimator method (Hu & White 2001) expanded to include photometric redshift bins

WL power spectra from CFHTLenS (W1, W2, W3 & W4 combined with inverse variance weights)

\[z_1: 0.5 < z \leq 0.85 \]
\[z_2: 0.85 < z \leq 1.3 \]

FK+ (in press)
Cosmological inference:

![Graph showing the relationship between Ω_m and σ_8 with different models and constraints.]

- ΛCDM
- ΛCDM + all
- Planck 2015

FK+ (in press)
Cosmological inference:

Model: ΛCDM+all

Total mass of 3 massive, degenerate neutrinos
Cosmological inference:

Which model describes the data the best?
Evidences:

<table>
<thead>
<tr>
<th>Model</th>
<th>ln Z</th>
<th>$2 \ln K$ ($K \equiv Z_i/Z_{\Lambda CDM}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΛCDM</td>
<td>-40.96 ± 0.06</td>
<td>0</td>
</tr>
<tr>
<td>ΛCDMa</td>
<td>-41.07 ± 0.06</td>
<td>-0.22</td>
</tr>
<tr>
<td>ΛCDM + ν</td>
<td>-41.63 ± 0.07</td>
<td>-1.34</td>
</tr>
<tr>
<td>ΛCDMa + ν</td>
<td>-41.83 ± 0.07</td>
<td>-1.74</td>
</tr>
<tr>
<td>ΛCDM + A_{bary}</td>
<td>-41.66 ± 0.06</td>
<td>-1.40</td>
</tr>
<tr>
<td>ΛCDM + ν + A_{bary}</td>
<td>-42.48 ± 0.07</td>
<td>-3.04</td>
</tr>
<tr>
<td>ΛCDM + Δz_{μ}</td>
<td>-40.75 ± 0.07</td>
<td>0.42</td>
</tr>
<tr>
<td>ΛCDM + all</td>
<td>-42.19 ± 0.07</td>
<td>-2.46</td>
</tr>
</tbody>
</table>

FK+ (in press)
Cosmological inference:

Degeneracy broken: $\Omega_m = 0.300 \pm 0.011$, $\sigma_8 = 0.818 \pm 0.013$
III. Conclusions
A direct extraction of the lensing power spectrum is a “cleaner” way to compare data with theory.

The power spectrum results show overall consistency with previous results based on correlation-functions.

Ongoing and future lensing surveys have the potential to constrain distinct features in multipole space such as left by massive neutrinos or baryon feedback with high precision.