Solving the cosmological « lithium problem » with a sterile neutrino

A loophole to the standard theory of electromagnetic cascade

Vivian Poulin
LAPTh and RWTH Aachen University

Talk based on

PRL. 114 (2015) 9, 091101

PRD. 91 (2015) 10, 103007

In collaboration with

Pasquale D. Serpico (LAPTh)

Texas Symposium, Geneva
december 15, 2015
Big Bang Nucleosynthesis in a nutshell

- Happened 10 - 200 s after the BB when the Universe had $T = [30, 70]$ keV
- Main nucleus form ^4He: $Y_p = 4n_{^4\text{He}}/n_B \approx 0.25$, others $\mathcal{O}(10^{-5} - 10^{-10})$

A typical reaction network, © Achim Weiss

Only one free parameter:

The photon-to-baryon ratio

$$\eta \equiv \frac{n_b}{n_\gamma} \sim 6 \times 10^{-10}$$

=> All abundances can be computed using numerical algorithm such as PArthENoPE

A. BBN and sterile neutrino

I. BBN and sterile neutrino
Main results

- Sterile neutrino and the lithium problem

I. BBN and sterile neutrino

V. Poulin - LAPTh & RWTH

© Coc et al. 2013
Main results

For 3 nuclei:

Strong observational constraints

\[Y_P > 0.2368 \]
\[2.56 \times 10^{-5} < ^2H/H < 3.48 \times 10^{-5} \]
\[^3He/H < 1.5 \times 10^{-5} \]

\(\text{© Coc et al. 2013} \)
The Lithium problem:

Overprediction of the ^7Li abundance

$$Y_{\text{Li}}^{\text{theo}} \approx 3 \times Y_{\text{Li}}^{\text{obs}}$$

For 3 nuclei:

Strong observational constraints

$$Y_p > 0.2368$$
$$2.56 \times 10^{-5} < ^2\text{H}/\text{H} < 3.48 \times 10^{-5}$$
$$^3\text{He}/\text{H} < 1.5 \times 10^{-5}$$

Main results

I. BBN and sterile neutrino

Texas Symposium, Geneva
The Lithium problem:

Overprediction of the ^7Li abundance

$Y_{p} > 0.2368$

$2.56 \times 10^{-5} < ^2\text{H}/H < 3.48 \times 10^{-5}$

$^3\text{He}/H < 1.5 \times 10^{-5}$

For 3 nuclei:

Strong observational constraints

$Y_{\text{Li}}^\text{theo} \simeq 3 \times Y_{\text{Li}}^\text{obs}$

Lithium is indirectly produced!

$^3\text{He} + ^4\text{He} \rightarrow ^7\text{Be} + \gamma$

followed by

$^7\text{Be} + e^- \rightarrow ^7\text{Li} + \nu_e, \tau_{\text{Be}} \sim 53\text{d}$

One has to destroy the Beryllium!
Sterile Neutrino and the BBN

- Modification of N_{eff} affects the expansion rate and the BBN outcome;
- If coupling $\nu_s \leftrightarrow \nu_e$, modification of the weak rates affects the n-p equilibrium which (mostly) sets the ^4He abundance;
- Eventually, creation of a lepton asymmetry influencing BBN;
- Decay products directly interacting with nuclei can modify BBN yields.
An « old » problem:

Jedamzik, Phys. Rev. D74 103509, 2006;
arXiv:0809.0631; arXiv:1403.5995...

- Big constraints from other nuclei
- Big constraints from entropy production and spectral distortions
An « old » problem:

Jedamzik, Phys. Rev. D74 103509, 2006;
arXiv:0809.0631; arXiv:1403.5995...

- Big constraints from other nuclei
- Big constraints from entropy production and spectral distortions

\[7\text{Be} + \gamma \rightarrow 4\text{He} + 3\text{He} \]

\[E_{\text{threshold}}(\text{Be}) = 1.58 \text{ MeV} \]
\[E_{\text{threshold}}(\text{De}) = 2.2 \text{ MeV} \]

One « trick »: if \(1.6 < E_0 < 2.2 \text{ MeV}\) it is possible to avoid all BBN constraints!
An « old » problem:

- Big constraints from other nuclei
- Big constraints from entropy production and spectral distortions

\[^7\text{Be} + \gamma \rightarrow ^4\text{He} + ^3\text{He} \]

\(E_{\text{threshold}}(\text{Be}) = 1.58 \text{ MeV} \)
\(E_{\text{threshold}}(\text{De}) = 2.2 \text{ MeV} \)

One « trick »: if \(1.6 < E_0 < 2.2 \text{ MeV} \) it is possible to avoid all BBN constraints!

However, this was known to fail, why would it work now?
Electromagnetic Cascade in a nutshell

We want to describe electromagnetic energy injection in a plasma of photons (very few e+e-, nuclei):
what is the resulting metastable distribution of photons?

Basic processes are (at high energies)

Particle multiplication and energy redistribution
Electromagnetic Cascade in a nutshell

We want to describe electromagnetic energy injection in a plasma of photons (very few e+e-, nuclei): what is the resulting metastable distribution of photons?

Basic processes are (at high energies)

\[\gamma \gamma_{th} \rightarrow e^+ e^- \]
\[e \gamma_{th} \rightarrow e \gamma \]

Particle multiplication and energy redistribution

The first process has a threshold, below it

\[\gamma \gamma_{th} \rightarrow \gamma \gamma \]

and eventually (very low rates)

\[\gamma N \rightarrow e N \]
\[\gamma e_{th} \rightarrow \gamma e \]
This has been shown to lead to a **universal spectrum**

- Shape independent of the energy / temperature of the bath:
 - Only dictates the **overall normalisation**;
- Threshold due to pair production.

Typically, after the end of standard BBN (5 keV):

\[E_{\text{cutoff}}(1 \text{ keV}) \sim 12 \text{ MeV} \quad E_{\text{cutoff}}(10 \text{ eV}) \sim 1.2 \text{ GeV} \]

All cases simulated inject energy such that \(E_{\gamma} \gg E_{\text{cutoff}} \)

=> « Theoretical prejudice »!
Typically, after the end of standard BBN (5 keV):

\[E_{\text{cutoff}}(1 \text{ keV}) \sim 12 \text{ MeV} \quad E_{\text{cutoff}}(10 \text{ eV}) \sim 1.2 \text{ GeV} \]

All cases simulated inject energy such that \[E_\gamma \gg E_{\text{cutoff}} \]
\[\Rightarrow \text{« Theoretical prejudice »!} \]

What if \(E_{\text{Injected}} < E_{\text{cutoff}} \), i.e. pair production is not operational?
Typically, after the end of standard BBN (5 keV):

\[E_{\text{cutoff}}(1 \text{ keV}) \sim 12 \text{ MeV} \quad E_{\text{cutoff}}(10 \text{ eV}) \sim 1.2 \text{ GeV} \]

All cases simulated inject energy such that \(E_{\gamma} \gg E_{\text{cutoff}} \)

\[\Rightarrow \text{« Theoretical prejudice »!} \]

What if \(E_{\text{Injected}} < E_{\text{cutoff}}, \text{i.e. pair production is not operational?} \)

Standard theory of electromagnetic cascade cannot be applied!
Typically, after the end of standard BBN (5 keV):

\[E_{\text{cutoff}}(1 \text{ keV}) \sim 12 \text{ MeV} \quad E_{\text{cutoff}}(10 \text{ eV}) \sim 1.2 \text{ GeV} \]

All cases simulated inject energy such that \(E_\gamma \gg E_{\text{cutoff}} \)

=> « Theoretical prejudice »!

What if \(E_{\text{Injected}} < E_{\text{cutoff}} \), i.e. pair production is not operational?

Standard theory of electromagnetic cascade cannot be applied!

After « standard » BBN:

\[E_{\text{threshold}}(\text{Be}) = 1.58 \text{ MeV} < E_{\text{cutoff}} \]

If \(E_{\text{threshold}} < E_0 < E_{\text{cutoff}} \)
results in the literature are wrong!
Consider a photon injection and start by neglecting diffused electrons. Remaining processes are:

\[\gamma \gamma_{th} \rightarrow \gamma \gamma, \ \gamma e_{th}^{\pm} \rightarrow \gamma e^{\pm}, \ \gamma N \rightarrow Ne^{\pm} \]
Consider a photon injection and start by neglecting diffused electrons. Remaining processes are:

\[\gamma \gamma_{\text{th}} \rightarrow \gamma \gamma, \ \gamma e_{\text{th}}^{\pm} \rightarrow \gamma e^{\pm}, \ \gamma N \rightarrow Ne^{\pm} \]

Relevant Boltzmann equation writes:

\[
\frac{\partial f_\gamma(E_\gamma)}{\partial t} = -\Gamma_\gamma(E_\gamma, T(t)) f_\gamma(E_\gamma, T(t)) + S(E_\gamma, t)
\]

whose stationary solution is

\[
f_\gamma^S(E_\gamma) = \frac{S(E_\gamma, t)}{\Gamma_\gamma(E_\gamma, t)}
\]

where for a decaying particle

\[
S(E_\gamma, t) = \frac{n_\gamma^0 \zeta_X (1 + z(t))^3 e^{-t/\tau_X}}{E_0 \tau_X} p_\gamma(E_\gamma, t)
\]

Hubble rate much smaller than all particle physics interaction rate, thus neglected.
Consider a photon injection and start by neglecting diffused electrons.

Remaining processes are:

\[\gamma \gamma_{th} \rightarrow \gamma \gamma, \quad \gamma e_{th}^\pm \rightarrow \gamma e^\pm, \quad \gamma N \rightarrow N e^\pm \]

Relevant Boltzmann equation writes:

\[
\frac{\partial f_\gamma(E_\gamma)}{\partial t} = -\Gamma_\gamma(E_\gamma, T(t)) f_\gamma(E_\gamma, T(t)) + S(E_\gamma, t)
\]

whose stationary solution is

\[
f_\gamma^S(E_\gamma) = \frac{S(E_\gamma, t)}{\Gamma_\gamma(E_\gamma, t)}
\]

where for a decaying particle

\[
S(E_\gamma, t) = \frac{n_0(\zeta X) 1 + z(t))^3 e^{-t/\tau_X}}{E_0 \tau_X} p_\gamma(E_\gamma, t)
\]

Hubble rate much smaller than all particle physics interaction rate, thus neglected.
Consider a photon injection and start by neglecting diffused electrons. Remaining processes are:

\[\gamma \gamma_{\text{th}} \rightarrow \gamma \gamma, \; \gamma e^{\pm}_{\text{th}} \rightarrow \gamma e^{\pm}, \; \gamma N \rightarrow Ne^{\pm} \]

Relevant Boltzmann equation writes:

\[
\frac{\partial f_{\gamma}(E_{\gamma})}{\partial t} = -\Gamma_{\gamma}(E_{\gamma}, T(t)) f_{\gamma}(E_{\gamma}, T(t)) + S(E_{\gamma}, t)
\]

whose stationary solution is

\[
f_{\gamma}^{S}(E_{\gamma}) = \frac{S(E_{\gamma}, t)}{\Gamma_{\gamma}(E_{\gamma}, t)}
\]

where for a decaying particle

\[
S(E_{\gamma}, t) = \frac{n_{0}(\xi_{X})}{E_{0} \tau_{X}} \left(1 + z(t)\right)^{3} e^{-t/\tau_{X}} p_{\gamma}(E_{\gamma}, t)
\]

Hubble rate much smaller than all particle physics interaction rate, thus neglected.
Starting from two body decay

$$p_\gamma(E_\gamma) = \delta(E_\gamma - E_0) \text{ with } E_0 = \frac{m_X}{2}$$

exact at the end-point, then iterate

$$S(E_\gamma, t) \to S(E_\gamma, t) + \int_{E_\gamma}^\infty dx K_\gamma(E_\gamma, x, t) f_\gamma(x, t)$$
Starting from two body decay

\[p_\gamma(E_\gamma) = \delta(E_\gamma - E_0) \text{ with } E_0 = \frac{m_X}{2} \]

exact at the end-point, then iterate

\[S(E_\gamma, t) \rightarrow S(E_\gamma, t) + \int_{E_\gamma}^{\infty} dx K_\gamma(E_\gamma, x, t) f_\gamma(x, t) \]

Finally compute nuclei abundances:

\[\frac{dY_A}{dt} = \sum_T Y_T \int_{0}^{\infty} dE_\gamma f_\gamma(E_\gamma, t) \sigma_{\gamma + T \rightarrow A}(E_\gamma) - Y_A \sum_P \int_{0}^{\infty} dE_\gamma f_\gamma(E_\gamma, t) \sigma_{\gamma + A \rightarrow P}(E_\gamma) \]

\[Y_A \equiv \frac{n_A}{n_b} \]
Starting from two body decay

\[p_\gamma(E_\gamma) = \delta(E_\gamma - E_0) \text{ with } E_0 = \frac{m_X}{2} \]

exact at the end-point, then iterate

\[S(E_\gamma, t) \to S(E_\gamma, t) + \int_{E_\gamma}^\infty dx K_\gamma(E_\gamma, x, t) f_\gamma(x, t) \]

Finally compute nuclei abundances:

\[\frac{dY_A}{dt} = \sum_T Y_T \int_0^\infty dE_\gamma f_\gamma(E_\gamma, t) \sigma_\gamma + T \to A(E_\gamma) \to A \sum_p \int_0^\infty dE_\gamma f_\gamma(E_\gamma, t) \sigma_\gamma + A \to P(E_\gamma) \]

Production from photodissociation of heavier nuclei

\[Y_A \equiv n_A/n_b \]
Starting from two body decay

$$p_\gamma(E_\gamma) = \delta(E_\gamma - E_0) \text{ with } E_0 = \frac{m_X}{2}$$

exact at the end-point, then iterate

$$S(E_\gamma, t) \to S(E_\gamma, t) + \int_{E_\gamma}^\infty dx K_\gamma(E_\gamma, x, t) f_\gamma(x, t)$$

Finally compute nuclei abundances:

$$\frac{dY_A}{dt} = \sum_T Y_T \int_0^\infty dE_\gamma f_\gamma(E_\gamma, t) \sigma_{\gamma + T \to A}(E_\gamma)$$

Production from photodissociation of heavier nuclei

$$Y_A \sum_P \int_0^\infty dE_\gamma f_\gamma(E_\gamma, t) \sigma_{\gamma + A \to P}(E_\gamma)$$

Destruction from its photodissociation

$$Y_A \equiv \frac{n_A}{n_b}$$
Typical results for a given energy and a given temperature of the thermal bath.

Here injected monochromatic photon $E_0 = 70\,\text{MeV}$ at $T = 100\,\text{eV}$.
Proof of principle solution: monochromatic photon injection

In our case, it is possible to solve the lithium problem, while fulfilling other constraints.

Note that this was not obvious at all!!
Proof of principle solution: monochromatic photon injection

In our case, it is possible to solve the lithium problem, while fulfilling other constraints.

Note that this was not obvious at all!!
Proof of principle solution: monochromatic photon injection

In our case, it is possible to solve the lithium problem, while fulfilling other constraints.

Note that this was not obvious at all!!

Solution with « wrong » spectrum: all regions are killed
Proof of principle solution:
monochromatic photon injection

In our case, it is possible to solve the lithium problem, while fulfilling other constraints.

Note that this was not obvious at all!!
Try with a « real » model that was known to fail when using universal spectrum: the Sterile (majorana) Neutrino

H. Ishida, M. Kusakabe and H. Okada,
PRD 90, 8, 083519 (2014)
Try with a « real » model that was known to fail when using universal spectrum: the Sterile (majorana) Neutrino

Convert the variables

\[\tau \rightarrow \Theta \quad \text{mixing angle} \]

\[\zeta \rightarrow \frac{n_s^0}{n_\nu^0} \quad \text{normalise to active neutrino density} \]

H. Ishida, M. Kusakabe and H. Okada, PRD 90, 8, 083519 (2014)
Try with a « real » model that was known to fail when using universal spectrum: the Sterile (majorana) Neutrino

H. Ishida, M. Kusakabe and H. Okada, PRD 90, 8, 083519 (2014)

Convert the variables

\[\tau \rightarrow \Theta \] mixing angle

\[\zeta \rightarrow n_s^0/n_\nu^0 \] normalise to active neutrino density

To avoid constraints from cosmology and labs mixing required to be mostly \(\nu_\mu \) or \(\nu_\tau \)

Typical branching ratio

\[1 : 0.1 : 0.01 \] in \(3
\nu: \nu_e^+e^-: \nu_\gamma \)
Try with a « real » model that was known to fail when using universal spectrum: the Sterile (majorana) Neutrino

Convert the variables

\[\tau \rightarrow \Theta \] mixing angle

\[\zeta \rightarrow \frac{n_s^0}{n_\nu^0} \] normalise to active neutrino density

To avoid constraints from cosmology and labs mixing required to be mostly \(\nu_\mu \) or \(\nu_\tau \)

Typical branching ratio

\[1 : 0.1 : 0.01 \] in \(3\nu : \nu e^+ e^- : \nu \gamma \)

Bounds from entropy is stronger and there’s a new constraint: variation of \(N_{\text{eff}} \) (planck sensitivity)

H. Ishida, M. Kusakabe
and H. Okada,
PRD 90, 8, 083519 (2014)
Try with a « real » model that was known to fail when using universal spectrum:
the Sterile (majorana) Neutrino

Bounds from entropy is stronger and there’s a new constraint:
variation of N_{eff} (planck sensitivity)

Convert the variables

$\tau \rightarrow \Theta$
$mixing\; angle$

$\zeta \rightarrow n_s^0/n_\nu^0$
$normalise\; to\; active\; neutrino\; density$

To avoid constraints from cosmology and labs mixing required to be mostly ν_μ or ν_τ

Typical branching ratio

$1:0.1:0.01$ in $3\nu: \nu e^+ e^-: \nu \gamma$

H. Ishida, M. Kusakabe
and H. Okada,
PRD 90, 8, 083519 (2014)

It works!
Try with a « real » model that was known to fail when using universal spectrum: the Sterile (majorana) Neutrino

Convert the variables

\[\tau \rightarrow \Theta \]

mixing angle

\[\zeta \rightarrow n_s^0/n_\nu^0 \]

normalise to active neutrino density

To avoid constraints from cosmology and labs mixing required to be mostly \(\nu_\mu \) or \(\nu_\tau \)

Typical branching ratio

\[1 : 0.1 : 0.01 \]

in \(3\nu : \nu e^+ e^- : \nu \gamma \)

Bounds from entropy is stronger and there’s a new constraint: variation of \(N_{\text{eff}} \) (planck sensitivity)

H. Ishida, M. Kusakabe and H.Okada, PRD 90, 8, 083519 (2014)

More details:

It works!
In a nutshell:
In a nutshell:

- We have addressed an unexplored corner of the parameter space, below the pair production threshold.
- We have shown that the *universality hypothesis breaks down.*
 The resulting spectrum can be *very different from the universal one.*
In a nutshell:

- We have addressed an unexplored corner of the parameter space, below the pair production threshold.

- We have shown that the universality hypothesis breaks down. The resulting spectrum can be very different from the universal one.

- We have shown how it might ease particle physics (electromagnetic) solution to the lithium problem, as illustrated with the sterile neutrino model.

- The same phenomenon also has important consequences for BBN bounds: they are more stringent and non-universal.
Thanks for your attention!