Subodh P. Patil

The Effective Strength of Gravity and the Scale of Inflation

Subodh P. Patil

University of Geneva

XXVIII Texas Symposium, December 14 2015

Based on:

I. Antoniadis, S.P.Patil; arXiv:1410.8845

I. Antoniadis, S.P.Patil; arXiv:1510.06759

What is the strength of gravity?

For any given momentum transfer, gravitational interactions have a strength set by a characteristic scale M_* .

Antoniadis, Patil, arXiv:1410.8845; arXiv:1510.06759

 \blacktriangleright Inferred from amplitudes calculated in an effective theory with a strong coupling scale M_{**}

For any given momentum transfer, gravitational interactions have a strength set by a characteristic scale M_* .

Antoniadis, Patil, arXiv:1410.8845; arXiv:1510.06759

 \blacktriangleright Inferred from amplitudes calculated in an effective theory with a strong coupling scale M∗∗

 $M_* \neq M_{**} \neq M_{pl}$

For any given momentum transfer, gravitational interactions have a strength set by a characteristic scale M_* .

Antoniadis, Patil, arXiv:1410.8845; arXiv:1510.06759

 \blacktriangleright Inferred from amplitudes calculated in an effective theory with a strong coupling scale M_{**}

 $M_* \neq M_{**} \neq M_{pl}$

 \triangleright Consider a particle w/ mass M.

For any given momentum transfer, gravitational interactions have a strength set by a characteristic scale M_* .

Antoniadis, Patil, arXiv:1410.8845; arXiv:1510.06759

 \blacktriangleright Inferred from amplitudes calculated in an effective theory with a strong coupling scale M_{**}

 $M_* \neq M_{**} \neq M_{pl}$

- \triangleright Consider a particle w/ mass M.
- \triangleright Scatter a test particle off a very heavy point mass; when $\Delta x \sim M^{-1}$, virtual pairs of these particles are created.

For any given momentum transfer, gravitational interactions have a strength set by a characteristic scale M_* .

Antoniadis, Patil, arXiv:1410.8845; arXiv:1510.06759

 \blacktriangleright Inferred from amplitudes calculated in an effective theory with a strong coupling scale M_{**}

 $M_* \neq M_{**} \neq M_{pl}$

- \triangleright Consider a particle w/ mass M.
- \triangleright Scatter a test particle off a very heavy point mass; when $\Delta x \sim M^{-1}$, virtual pairs of these particles are created.
- \triangleright Positive/negative energy solution attracted/ repulsed from source, effectively anti-screening it. Gravity appears to have gotten 'stronger'.

For any given momentum transfer, gravitational interactions have a strength set by a characteristic scale M_* .

Antoniadis, Patil, arXiv:1410.8845; arXiv:1510.06759

 \blacktriangleright Inferred from amplitudes calculated in an effective theory with a strong coupling scale M∗∗

 $M_* \neq M_{**} \neq M_{pl}$

- \triangleright Consider a particle w/ mass M.
- \triangleright Scatter a test particle off a very heavy point mass; when $\Delta x \sim M^{-1}$, virtual pairs of these particles are created.
- \triangleright Positive/negative energy solution attracted/ repulsed from source, effectively anti-screening it. Gravity appears to have gotten 'stronger'.
- \triangleright N.B. There are many subtleties and caveat emptors when dealing with running quantities in EFT of gravity. (cf. Anber, Donoghue, arXiv:1111.2875; Bjerrum-Bohr et al, arXiv:1505.04974)

More concretely, every massive species contributes to lowering the scale at which strong gravitational effects become important.

 $M_{**} \sim M_{pl}/\sqrt{N}$

More concretely, every massive species contributes to lowering the scale at which strong gravitational effects become important.

 $M_{**} \sim M_{pl}/\sqrt{N}$

▶ On a Minkowski background: Dvali, Redi, arXiv:0710.4344

 $\sim \frac{1}{M_{\rho l}^4}$ $\frac{1}{\rho^2}\langle\, \mathcal{T}(-\rho)\, \mathcal{T}(\rho)\rangle\, \frac{1}{\rho^2}$

More concretely, every massive species contributes to lowering the scale at which strong gravitational effects become important.

- $M_{**} \sim M_{pl}/\sqrt{N}$
- ▶ On a Minkowski background: Dvali, Redi, arXiv:0710.4344

 $\sim \frac{1}{M_{\rho l}^4}$ $\frac{1}{\rho^2}\langle\, \mathcal{T}(-\rho)\, \mathcal{T}(\rho)\rangle\, \frac{1}{\rho^2}$

In the limit $p^2 \gg M^2$, theory becomes conformal;

$$
\langle T(-p)T(p)\rangle \sim \frac{c}{16\pi^2}p^4\log\frac{p^2}{\mu^2}
$$

 \blacktriangleright $c := N = \frac{4}{3}N_{\phi} + 8N_{\psi} + 16N_{V}$ Duff, Nucl. Phys. B 125, 334 (1977)

More concretely, every massive species contributes to lowering the scale at which strong gravitational effects become important.

- $M_{**} \sim M_{pl}/\sqrt{N}$
- ▶ On a Minkowski background: Dvali, Redi, arXiv:0710.4344

 $\sim \frac{1}{M_{\rho l}^4}$ $\frac{1}{\rho^2}\langle\, \mathcal{T}(-\rho)\, \mathcal{T}(\rho)\rangle\, \frac{1}{\rho^2}$

In the limit $p^2 \gg M^2$, theory becomes conformal;

$$
\langle T(-p)T(p)\rangle \sim \frac{c}{16\pi^2}p^4\log\frac{p^2}{\mu^2}
$$

- \blacktriangleright $c := N = \frac{4}{3}N_{\phi} + 8N_{\psi} + 16N_{V}$ Duff, Nucl. Phys. B 125, 334 (1977)
- ▶ Comparison with the free propagator $1/(p^2M_{pl}^2)$ implies that the perturbative expansion fails at $p = M_{**}$ where $M_{**} \sim \frac{M_{pl}}{\sqrt{N}}$.

Generalized to curved backgrounds, places bounds on maximum allowed curvature.

- ► $S = \frac{M_{pl}^2}{2} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} [c_1R^2 + c_2R^{\mu\nu}R_{\mu\nu}] + ...$
- \triangleright c_1, c_2 is a weigthed index counting spins and the numbers of species $c_1, c_2 \sim N$

Generalized to curved backgrounds, places bounds on maximum allowed curvature.

- ► $S = \frac{M_{pl}^2}{2} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} [c_1R^2 + c_2R^{\mu\nu}R_{\mu\nu}] + ...$
- \triangleright c_1, c_2 is a weigthed index counting spins and the numbers of species $c_1, c_2 \sim N$
- ► Expansion breaks down when $R \sim M_{pl}^2/N$ or when $\rho^2 \sim M_{pl}^2/N$

Generalized to curved backgrounds, places bounds on maximum allowed curvature.

- ► $S = \frac{M_{pl}^2}{2} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} [c_1R^2 + c_2R^{\mu\nu}R_{\mu\nu}] + ...$
- \triangleright c_1, c_2 is a weigthed index counting spins and the numbers of species $c_1, c_2 \sim N$
- ► Expansion breaks down when $R \sim M_{pl}^2/N$ or when $\rho^2 \sim M_{pl}^2/N$
- \triangleright e.g. During inflation, lets say we tried to calculate graviton 2-pt function; $h_{\mu\nu} = g_{\mu\nu} - g_{\mu\nu}^0$

Generalized to curved backgrounds, places bounds on maximum allowed curvature.

- ► $S = \frac{M_{pl}^2}{2} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} [c_1R^2 + c_2R^{\mu\nu}R_{\mu\nu}] + ...$
- \triangleright c_1, c_2 is a weigthed index counting spins and the numbers of species $c_1, c_2 \sim N$
- ► Expansion breaks down when $R \sim M_{pl}^2/N$ or when $\rho^2 \sim M_{pl}^2/N$
- \triangleright e.g. During inflation, lets say we tried to calculate graviton 2-pt function; $h_{\mu\nu} = g_{\mu\nu} - g_{\mu\nu}^0$
- \blacktriangleright From leading term:

$$
S = \frac{M_{pl}^2}{8} \int d^4x \sqrt{-g^0} \left[\dot{h}_{ij} \dot{h}_{ij} - \frac{1}{a^2} \partial_k h_{ij} \partial_k h_{ij} \right]
$$

 \blacktriangleright ... but also get contributions from higher curvature terms s.t.

$$
M_{\rho l}^2 \rightarrow M_{\rho l}^2 \left(1 + c \frac{H^2}{M_{\rho l}^2} + \ldots \right)
$$

Generalized to curved backgrounds, places bounds on maximum allowed curvature.

- ► $S = \frac{M_{pl}^2}{2} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} [c_1R^2 + c_2R^{\mu\nu}R_{\mu\nu}] + ...$
- \triangleright c_1, c_2 is a weigthed index counting spins and the numbers of species $c_1, c_2 \sim N$
- ► Expansion breaks down when $R \sim M_{pl}^2/N$ or when $\rho^2 \sim M_{pl}^2/N$
- \triangleright e.g. During inflation, lets say we tried to calculate graviton 2-pt function; $h_{\mu\nu} = g_{\mu\nu} - g_{\mu\nu}^0$
- \blacktriangleright From leading term:

$$
S = \frac{M_{pl}^2}{8} \int d^4x \sqrt{-g^0} \left[\dot{h}_{ij} \dot{h}_{ij} - \frac{1}{a^2} \partial_k h_{ij} \partial_k h_{ij} \right]
$$

 \blacktriangleright ... but also get contributions from higher curvature terms s.t.

$$
M_{\rho l}^2 \rightarrow M_{\rho l}^2 \left(1 + c \frac{H^2}{M_{\rho l}^2} + ... \right)
$$

► Expansion breaks down when $H^2 \sim M_{pl}^2/N$.

Generalized to curved backgrounds, places bounds on maximum allowed curvature.

- ► $S = \frac{M_{pl}^2}{2} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} [c_1R^2 + c_2R^{\mu\nu}R_{\mu\nu}] + ...$
- \triangleright c_1, c_2 is a weigthed index counting spins and the numbers of species $c_1, c_2 \sim N$
- ► Expansion breaks down when $R \sim M_{pl}^2/N$ or when $\rho^2 \sim M_{pl}^2/N$
- \triangleright e.g. During inflation, lets say we tried to calculate graviton 2-pt function; $h_{\mu\nu} = g_{\mu\nu} - g_{\mu\nu}^0$
- \blacktriangleright From leading term:

$$
S = \frac{M_{pl}^2}{8} \int d^4x \sqrt{-g^0} \left[\dot{h}_{ij} \dot{h}_{ij} - \frac{1}{a^2} \partial_k h_{ij} \partial_k h_{ij} \right]
$$

 \blacktriangleright ... but also get contributions from higher curvature terms s.t.

$$
M_{\rho l}^2 \rightarrow M_{\rho l}^2 \left(1 + c \frac{H^2}{M_{\rho l}^2} + \ldots \right)
$$

- ► Expansion breaks down when $H^2 \sim M_{pl}^2/N$.
- \triangleright Corollary: it is not possible to consistently *infer* a scale of inflation *H* greater than M_{pl}/\sqrt{N} .

The *strength* of gravity M_{*} is an independent quantity¹. Provided we are below M_{**} , any universally coupled species will also affect the effective strength of gravity depending on the process in question (equivalence principle, in general violated).

 \triangleright KK gravitons do so universally for all conserved sources.

¹Can be M_{pl} all the way up M_{**} cf. Gasperini, arXiv:1508.06100

The *strength* of gravity M_{*} is an independent quantity¹. Provided we are below M_{**} , any universally coupled species will also affect the effective strength of gravity depending on the process in question (equivalence principle, in general violated).

 \triangleright KK gravitons do so universally for all conserved sources.

 \triangleright Anything that couples to the trace of the energy momentum tensor (e.g. non-minimally coupled scalars and $U(1)$ vectors) does so process dependently.

¹Can be M_{pl} all the way up M_{**} cf. Gasperini, arXiv:1508.06100

The *strength* of gravity M_{*} is an independent quantity¹. Provided we are below M_{**} , any universally coupled species will also affect the effective strength of gravity depending on the process in question (equivalence principle, in general violated).

 \triangleright KK gravitons do so universally for all conserved sources.

- \triangleright Anything that couples to the trace of the energy momentum tensor (e.g. non-minimally coupled scalars and $U(1)$ vectors) does so process dependently.
- $M_*^2 = M_{pl}^2/N_*$, N_* counts the number of species with masses below the momentum transfer of the process in question.

¹Can be M_{pl} all the way up M_{**} cf. Gasperini, arXiv:1508.06100

Subodh P. Patil

For KK gravitons with mass M , we have tree level exchange:

$$
\frac{1}{M_{\rho l}^2 \rho^2} \to \frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 (\rho^2 + M^2)}
$$

 $+$ $\sum_{\alpha\beta}^{\infty}$ $h_{\alpha\beta}$

Subodh P. Patil

For KK gravitons with mass M , we have tree level exchange:

$$
\frac{1}{M_{\rho l}^2 \rho^2} \to \frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 (\rho^2 + M^2)}
$$

 \blacktriangleright In the regime $M^2 \ll p^2 \ll M_{pl}^2/N$, strength of gravity is modified immediately above $p = M$ as:

$$
\frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 \rho^2 (1 + M^2/\rho^2)} \rightarrow \frac{n+1}{M_{\rho l}^2 \rho^2}
$$

 $h_{\alpha\beta}$ $h_{\alpha\beta}$

Subodh P. Patil

 \triangleright For KK gravitons with mass M, we have tree level exchange:

$$
\frac{1}{M_{\rho l}^2 \rho^2} \to \frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 (\rho^2 + M^2)}
$$

 \blacktriangleright In the regime $M^2 \ll p^2 \ll M_{pl}^2/N$, strength of gravity is modified immediately above $p = M$ as:

$$
\frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 \rho^2 (1 + M^2/\rho^2)} \rightarrow \frac{n+1}{M_{\rho l}^2 \rho^2}
$$

Iniversally coupled species, e.g. Higgs $(w/D = 6$ interactions) $\Delta{\cal L}_{\rm eff} \sim c_1 \frac{H^\dagger H}{M_{pl}^2} \partial_\mu \varphi \partial^\mu \varphi + c_2 \frac{H^\dagger H}{M_{pl}^2} \bar{\psi} \partial \psi \sim c_{\{1,2\}} \frac{H^\dagger H}{M_{pl}^2} T^\mu_\mu$

 $h_{\alpha\beta}$ $h_{\alpha\beta}$

 \triangleright For KK gravitons with mass M, we have tree level exchange:

$$
\frac{1}{M_{\rho l}^2 \rho^2} \to \frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 (\rho^2 + M^2)}
$$

 \blacktriangleright In the regime $M^2 \ll p^2 \ll M_{pl}^2/N$, strength of gravity is modified immediately above $p = M$ as:

$$
\frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 \rho^2 (1 + M^2/\rho^2)} \rightarrow \frac{n+1}{M_{\rho l}^2 \rho^2}
$$

- Iniversally coupled species, e.g. Higgs (w/ $D = 6$ interactions) $\Delta{\cal L}_{\rm eff} \sim c_1 \frac{H^\dagger H}{M_{pl}^2} \partial_\mu \varphi \partial^\mu \varphi + c_2 \frac{H^\dagger H}{M_{pl}^2} \bar{\psi} \partial \psi \sim c_{\{1,2\}} \frac{H^\dagger H}{M_{pl}^2} T^\mu_\mu$
- \blacktriangleright Will couple to the trace of the EM tensor Δ $\mathcal{L}_{\text{eff}} \sim c_i \frac{\nu h}{M_{pl}^2} T^{\mu}_{\mu}$.

 $h_{\alpha\beta}$ $h_{\alpha\beta}$

 \triangleright For KK gravitons with mass M, we have tree level exchange:

$$
\frac{1}{M_{\rho l}^2 \rho^2} \to \frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 (\rho^2 + M^2)}
$$

 \blacktriangleright In the regime $M^2 \ll p^2 \ll M_{pl}^2/N$, strength of gravity is modified immediately above $p = M$ as:

$$
\tfrac{1}{M_{\rho l}^2 \rho^2} + \tfrac{n}{M_{\rho l}^2 \rho^2 \left(1 + M^2 / \rho^2\right)} \to \tfrac{n+1}{M_{\rho l}^2 \rho^2}
$$

- Iniversally coupled species, e.g. Higgs (w/ $D = 6$ interactions) $\Delta{\cal L}_{\rm eff} \sim c_1 \frac{H^\dagger H}{M_{pl}^2} \partial_\mu \varphi \partial^\mu \varphi + c_2 \frac{H^\dagger H}{M_{pl}^2} \bar{\psi} \partial \psi \sim c_{\{1,2\}} \frac{H^\dagger H}{M_{pl}^2} T^\mu_\mu$
- \blacktriangleright Will couple to the trace of the EM tensor Δ $\mathcal{L}_{\text{eff}} \sim c_i \frac{\nu h}{M_{pl}^2} T^{\mu}_{\mu}$.

$$
\triangleright \frac{1}{M_{\rho l}^2 \rho^2} \to \frac{1}{M_{\rho l}^2 \rho^2} + \frac{g_l^2}{M_{\rho l}^2 (\rho^2 + m_H^2)}; \quad g_l^2 := c_l^2 v^2 / M_{\rho l}^2
$$

 $h_{\alpha\beta}$ $h_{\alpha\beta}$

 \triangleright For KK gravitons with mass M, we have tree level exchange:

$$
\frac{1}{M_{\rho l}^2 \rho^2} \to \frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 (\rho^2 + M^2)}
$$

 \blacktriangleright In the regime $M^2 \ll p^2 \ll M_{pl}^2/N$, strength of gravity is modified immediately above $p = M$ as:

$$
\frac{1}{M_{\rho l}^2 \rho^2} + \frac{n}{M_{\rho l}^2 \rho^2 (1 + M^2/\rho^2)} \rightarrow \frac{n+1}{M_{\rho l}^2 \rho^2}
$$

- Iniversally coupled species, e.g. Higgs (w/ $D = 6$ interactions) $\Delta{\cal L}_{\rm eff} \sim c_1 \frac{H^\dagger H}{M_{pl}^2} \partial_\mu \varphi \partial^\mu \varphi + c_2 \frac{H^\dagger H}{M_{pl}^2} \bar{\psi} \partial \psi \sim c_{\{1,2\}} \frac{H^\dagger H}{M_{pl}^2} T^\mu_\mu$
- \blacktriangleright Will couple to the trace of the EM tensor Δ $\mathcal{L}_{\text{eff}} \sim c_i \frac{\nu h}{M_{pl}^2} T^{\mu}_{\mu}$.

$$
\triangleright \ \frac{1}{M_{\rho l}^2 \rho^2} \to \frac{1}{M_{\rho l}^2 \rho^2} + \frac{g_l^2}{M_{\rho l}^2 (\rho^2 + m_H^2)}; \quad g_l^2 := c_l^2 \nu^2 / M_{\rho l}^2
$$

► Non-minimal couplings do the same. $M_* = M_{pl}/N_*$, N_* a (process dependent) weighted index.

It is widely understood that any detection of primordial tensor modes in the CMB determines the scale of inflation. Or does it?

 \blacktriangleright In foliation were inflaton fluctuations are gauged away (comoving/ unitary gauge):

 $h_{ij}(t,x)=a^2(t)e^{2\mathcal{R}(t,x)}\hat{h}_{ij};\quad \hat{h}_{ij}:=\exp[\gamma_{ij}],\quad \partial_i\gamma_{ij}=\gamma_{ii}=0$

It is widely understood that any detection of primordial tensor modes in the CMB determines the scale of inflation. Or does it?

 \blacktriangleright In foliation were inflaton fluctuations are gauged away (comoving/ unitary gauge):

 $h_{ij}(t,x)=a^2(t)e^{2\mathcal{R}(t,x)}\hat{h}_{ij};\quad \hat{h}_{ij}:=\exp[\gamma_{ij}],\quad \partial_i\gamma_{ij}=\gamma_{ii}=0$

In Can compute two point correlators of \mathcal{R}, γ_{ii} **.** Useful quantity is the so called dimensionless power spectrum

 $2\pi^2\delta^3(\vec{k}+\vec{q})\mathcal{P}_\mathcal{R}(k) := k^3\langle 0|\widehat{\mathcal{R}}_{\vec{k}}\widehat{\mathcal{R}}_{\vec{q}}|0\rangle|_{\text{in in}}$

$$
\mathcal{P}_{\mathcal{R}} := \frac{H_{*}^{2}}{8\pi^{2}M_{*s}^{2}\epsilon_{*}} = \mathcal{A} \times 10^{-10}; \quad \epsilon_{*} := -\dot{H}_{*}/H_{*}^{2}
$$

Amplitude fixed by observations.

It is widely understood that any detection of primordial tensor modes in the CMB determines the scale of inflation. Or does it?

 \blacktriangleright In foliation were inflaton fluctuations are gauged away (comoving/ unitary gauge):

 $h_{ij}(t,x)=a^2(t)e^{2\mathcal{R}(t,x)}\hat{h}_{ij};\quad \hat{h}_{ij}:=\exp[\gamma_{ij}],\quad \partial_i\gamma_{ij}=\gamma_{ii}=0$

In Can compute two point correlators of \mathcal{R}, γ_{ii} **.** Useful quantity is the so called dimensionless power spectrum

 $2\pi^2\delta^3(\vec{k}+\vec{q})\mathcal{P}_\mathcal{R}(k) := k^3\langle 0|\widehat{\mathcal{R}}_{\vec{k}}\widehat{\mathcal{R}}_{\vec{q}}|0\rangle|_{\text{in in}}$

$$
\mathcal{P}_{\mathcal{R}} := \frac{H_{*}^{2}}{8\pi^{2}M_{*s}^{2}\epsilon_{*}} = \mathcal{A} \times 10^{-10}; \quad \epsilon_{*} := -\dot{H}_{*}/H_{*}^{2}
$$

Amplitude fixed by observations.

► But what is M_{**} ?

Subodh P. Patil

 \triangleright Consider a non-minimally coupled species with a mass between $10^{-2}eV$ and the putative scale of inflation: $\Delta {\cal L}_{\rm eff} \sim \xi \, \eta^2 \frac{ T^{\mu}_{\mu}}{M_{\rho l}^2} \equiv - \xi \, \eta^2 R$

 \triangleright Consider a non-minimally coupled species with a mass between $10^{-2}eV$ and the putative scale of inflation: $\Delta {\cal L}_{\rm eff} \sim \xi \, \eta^2 \frac{ T^{\mu}_{\mu}}{M_{\rho l}^2} \equiv - \xi \, \eta^2 R$ ► Naively: $\mathcal{L}_{\text{eff}} \supset \frac{M_{pl}^2}{2}$ $\left(1-\frac{2\xi\eta^2}{M_{pl}^2}\right)R$

 \triangleright Consider a non-minimally coupled species with a mass between $10^{-2}eV$ and the putative scale of inflation: $\Delta {\cal L}_{\rm eff} \sim \xi \, \eta^2 \frac{ T^{\mu}_{\mu}}{M_{\rho l}^2} \equiv - \xi \, \eta^2 R$ ► Naively: $\mathcal{L}_{\text{eff}} \supset \frac{M_{pl}^2}{2}$ $\left(1-\frac{2\xi\eta^2}{M_{pl}^2}\right)R$ $\blacktriangleright \enspace \bm{g}_{\mu\nu} = \left(1 - \frac{2\xi\eta^2}{M_{\rho l}^2}\right)^{-1} \widetilde{\bm{g}}_{\mu\nu} \, := F^{-1}(\eta) \widetilde{\bm{g}}_{\mu\nu}$

 \triangleright Consider a non-minimally coupled species with a mass between $10^{-2}eV$ and the putative scale of inflation: $\Delta {\cal L}_{\rm eff} \sim \xi \, \eta^2 \frac{ T^{\mu}_{\mu}}{M_{\rho l}^2} \equiv - \xi \, \eta^2 R$ ► Naively: $\mathcal{L}_{\text{eff}} \supset \frac{M_{pl}^2}{2}$ $\left(1-\frac{2\xi\eta^2}{M_{pl}^2}\right)R$ $\blacktriangleright \enspace \bm{g}_{\mu\nu} = \left(1 - \frac{2\xi\eta^2}{M_{\rho l}^2}\right)^{-1} \widetilde{\bm{g}}_{\mu\nu} \, := F^{-1}(\eta) \widetilde{\bm{g}}_{\mu\nu}$ \blacktriangleright $\mathcal{L}_{\text{eff}} \supset \frac{M_{pl}^2}{2} \widetilde{R} + F^{-2}(\eta) \mathcal{L}_m \left[F^{-1}(\eta) \widetilde{g}_{\mu\nu}, \psi, A_\mu, \phi, \eta \right] + ...$

- \triangleright Consider a non-minimally coupled species with a mass between $10^{-2}eV$ and the putative scale of inflation: $\Delta {\cal L}_{\rm eff} \sim \xi \, \eta^2 \frac{ T^{\mu}_{\mu}}{M_{\rho l}^2} \equiv - \xi \, \eta^2 R$ ► Naively: $\mathcal{L}_{\text{eff}} \supset \frac{M_{pl}^2}{2}$ $\left(1-\frac{2\xi\eta^2}{M_{pl}^2}\right)R$ $\blacktriangleright \enspace \bm{g}_{\mu\nu} = \left(1 - \frac{2\xi\eta^2}{M_{\rho l}^2}\right)^{-1} \widetilde{\bm{g}}_{\mu\nu} \, := F^{-1}(\eta) \widetilde{\bm{g}}_{\mu\nu}$ \blacktriangleright $\mathcal{L}_{\text{eff}} \supset \frac{M_{pl}^2}{2} \widetilde{R} + F^{-2}(\eta) \mathcal{L}_m \left[F^{-1}(\eta) \widetilde{g}_{\mu\nu}, \psi, A_\mu, \phi, \eta \right] + ...$
- ► EM tensor scales as $T^{\mu}_{\nu}(\eta_*) = \frac{F^2(\eta_0)}{F^2(\eta_*)} T^{\mu}_{\nu}(\eta_0)$. This is equivalent to keeping the EM tensor fixed, but scaling M_{**} as $M_{**} \propto F(\eta) M_{**}(\eta) = F(\eta)/F(\eta_0) \cdot M_{\eta_0}$

 \triangleright Consider a non-minimally coupled species with a mass between $10^{-2}eV$ and the putative scale of inflation: $\Delta {\cal L}_{\rm eff} \sim \xi \, \eta^2 \frac{ T^{\mu}_{\mu}}{M_{\rho l}^2} \equiv - \xi \, \eta^2 R$ ► Naively: $\mathcal{L}_{\text{eff}} \supset \frac{M_{pl}^2}{2}$ $\left(1-\frac{2\xi\eta^2}{M_{pl}^2}\right)R$ $\blacktriangleright \enspace \bm{g}_{\mu\nu} = \left(1 - \frac{2\xi\eta^2}{M_{\rho l}^2}\right)^{-1} \widetilde{\bm{g}}_{\mu\nu} \, := F^{-1}(\eta) \widetilde{\bm{g}}_{\mu\nu}$ \blacktriangleright $\mathcal{L}_{\text{eff}} \supset \frac{M_{pl}^2}{2} \widetilde{R} + F^{-2}(\eta) \mathcal{L}_m \left[F^{-1}(\eta) \widetilde{g}_{\mu\nu}, \psi, A_\mu, \phi, \eta \right] + ...$ ► EM tensor scales as $T^{\mu}_{\nu}(\eta_*) = \frac{F^2(\eta_0)}{F^2(\eta_*)} T^{\mu}_{\nu}(\eta_0)$. This is equivalent to keeping the EM tensor fixed, but scaling M_{**} as $M_{**} \propto F(\eta) M_{**}(\eta) = F(\eta)/F(\eta_0) \cdot M_{\eta_0}$ $M_{*s}^2 = M_{\rho l}^2 \frac{F^2(\eta_*)}{F^2(\eta_0)} \approx \frac{M_{\rho l}^2}{1+\tilde{N}_*}$; where $\tilde{N}_* := \sum_i g_i$ where for example, $g_i = 2\Delta(\xi_i\eta_i^2)/M_{pl}^2$.

 \triangleright Similarly for tensor perturbations – all TT spin two species* lighter than H contribute to the power spectrum:

 $\mathcal{P}_\gamma:=2(1+N_{\text{KK}}^{\text{T}})\frac{H_*^2}{\pi^2M_{*s}^2}$

 \triangleright Similarly for tensor perturbations – all TT spin two species* lighter than H contribute to the power spectrum:

$$
\mathcal{P}_{\gamma} := 2(1 + N_{\text{KK}}^{\text{T}}) \frac{H_{*}^{2}}{\pi^{2} M_{*s}^{2}}
$$

► Equivalent to the replacement $M_{\ast}^2 = M_{\ast s}^2/(1 + N_{\rm KK}^{\rm T})$

$$
\mathcal{P}_\gamma:=2\tfrac{H_*^2}{\pi^2M_{*t}^2};\quad r_*:=\tfrac{\mathcal{P}_\gamma}{\mathcal{P}_\mathcal{R}}=16\varepsilon_*\left(\tfrac{M_{*s}^2}{M_{*T}^2}\right)
$$

► Any positive detection (i.e. determination of r_*) implies

$$
V_*^{1/4} = \frac{M_{\text{pl}}}{\sqrt{N_*}} \left(\frac{3\pi^2 A r_*}{2 \cdot 10^{10}} \right)^{1/4}; \quad N_* \sim (1 + N_{\text{KK}}^T)(1 + N_s)
$$

 \triangleright Similarly for tensor perturbations – all TT spin two species* lighter than H contribute to the power spectrum:

$$
\mathcal{P}_{\gamma} := 2(1 + N_{\text{KK}}^{\text{T}}) \frac{H_{*}^{2}}{\pi^{2} M_{*s}^{2}}
$$

► Equivalent to the replacement $M_{\ast}^2 = M_{\ast s}^2/(1 + N_{\rm KK}^{\rm T})$

$$
\mathcal{P}_{\gamma} := 2 \frac{H_{*}^{2}}{\pi^{2} M_{*t}^{2}}; \quad r_{*} := \frac{\mathcal{P}_{\gamma}}{\mathcal{P}_{\mathcal{R}}} = 16 \epsilon_{*} \left(\frac{M_{*s}^{2}}{M_{*T}^{2}} \right)
$$

► Any positive detection (i.e. determination of r_*) implies

$$
V_*^{1/4} = \frac{M_{pl}}{\sqrt{N_*}} \left(\frac{3\pi^2 A r_*}{2 \cdot 10^{10}}\right)^{1/4}; \quad N_* \sim (1 + N_{KK}^T)(1 + N_s)
$$

► e.g. $r_* = 0.1$ implies $V_*^{1/4} = 7.6 \times 10^{-3} M_{pl}/\sqrt{N_*}$. Uncertain up to unknown N_* .

 \triangleright Similarly for tensor perturbations – all TT spin two species* lighter than H contribute to the power spectrum:

$$
\mathcal{P}_{\gamma} := 2(1 + N_{\text{KK}}^{\text{T}}) \frac{H_{*}^{2}}{\pi^{2} M_{*s}^{2}}
$$

► Equivalent to the replacement $M_{\ast}^2 = M_{\ast s}^2/(1 + N_{\rm KK}^{\rm T})$

$$
\mathcal{P}_{\gamma} := 2 \frac{H_{*}^{2}}{\pi^{2} M_{*t}^{2}}; \quad r_{*} := \frac{\mathcal{P}_{\gamma}}{\mathcal{P}_{\mathcal{R}}} = 16 \epsilon_{*} \left(\frac{M_{*s}^{2}}{M_{*T}^{2}} \right)
$$

► Any positive detection (i.e. determination of r_*) implies

 $V^{1/4}_* = \frac{M_{pl}}{\sqrt{N}}$ $\frac{N_{pl}}{N_*}\left(\frac{3\pi^2{\cal A}I_*}{2\cdot 10^{10}}\right)^{1/4};~~~N_*\sim (1+N_{KK}^{\sf T})(1+N_{\sf s})$

- ► e.g. $r_* = 0.1$ implies $V_*^{1/4} = 7.6 \times 10^{-3} M_{pl}/\sqrt{N_*}$. Uncertain up to unknown N_* .
- \triangleright * N.B. Higuchi bound: massive spin 2 fields inconsistent on dS backgrounds s.t. $m^2 < 2H^2$. However inflation is not dS, KK evidently gravitons are not described by the Fierz-Pauli Lagrangian in progress.

Subodh P. Patil

The inferred energy scale of inflation depends on the hidden field content of the universe.

 \triangleright Extra species from compactification below the scale of inflation can complicate inference of its scale.

The inferred energy scale of inflation depends on the hidden field content of the universe.

- \triangleright Extra species from compactification below the scale of inflation can complicate inference of its scale.
- \triangleright For putatively low scale inflationary models, extra species can bring down the scale of inflation even further. Collider constraints?

The inferred energy scale of inflation depends on the hidden field content of the universe.

- \triangleright Extra species from compactification below the scale of inflation can complicate inference of its scale.
- \triangleright For putatively low scale inflationary models, extra species can bring down the scale of inflation even further. Collider constraints?
- ► Given $M_* \leq M_{pl}$ and that $M_{**} = M_{pl}/N$, N being total number of species, can infer the absolute bound $N\leq \frac{9.15}{r_*}\times 10^7\left(\frac{M_{pl}^2}{M_{*T}^2}\right)$ λ