

The LZ Dark Matter detector

28th Texas Symposium on Relativistic Astrophysics Bhawna Gomber (University of Wisconsin, Madison) on behalf of the LZ collaboration

LZ is a second-generation dark-matter experiment designed to achieve unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c^2 to hundreds of TeV/c^2 . With total liquid xenon mass of about 10 tonnes, LZ is planned to achieve a sensitivity to WIMP-nucleon spin-independent cross section approaching 2X10 - 48 cm² in 3 years of operation. This represents an improvement of almost three orders of magnitude over current results, covering a substantial range of theoreticallymotivated dark matter candidates. We will present aspects of LZ's designs that permit achievement of this planned sensitivity.

The Dark matter Problem

A real challenge for experimentalists to study this known energy denisty

- There is a known effect looking for an answer.. as opposed to a known solution looking for an experimental effect.
- **Postulate-1:**DM is a particle.
- **❖ Postulate-2:DM and SM particles interact with** some force that is very weak but much stronger than gravity.

Introduction

Detection Techniques thermal freeze-out (early Univ.) indirect detection (now) SM production at colliders

Important to maintain the theoretical conenction between these 3 approaches

Direct Detection

- ✓ Basic goal: Search for nuclear recoil from DM elastic scattering
- ✓ Simple dynamics: Cross section α (form factor)²

Two-phase Xenon TPC (Time projection Chamber): Two Signal technique

LZ: Evolution of LUX and ZEPLIN

- LUX water shield and an added liquid scintillator active veto.
- Instrumented "skin" region of peripheral xenon as another veto system.
- Unprecedented levels of Kr removal from Xe.
- Radon suppression during contruction, assembly and operations.
- Photomultipliers with ultra-low natural radioactivity.
- Cryogenics and Xe purification systems made external to the mai detector in a unique design.

Liquid detectors: "easy" scaling

Section View of TPC

LZ (LUX-Zeplin) detector

light collection, background rejection (ER Xe detector – Good discrimination) and signal detection efficiency.

- Sophisticated Veto System Skin (outside active Xe region) + scintillator/water allows maximum fiduical volume to be obtained, maximize use of Xe and substantially increases reliability of background measurements
- Control backgrounds, both internal (within the Xe) and external from detector components/environment.

Scintillation process in LXe

- Difference in recombination efficiency used to discriminate between electron and nuclear recoil.
- Xenon is transparent to its own scintillation light.
- Figure of merit derived from plots of Log (charge) escaping recombination/total primary light produced).

Noble Element Simulation Technique (NEST): Data driven model – Explain scintillation and ionization yields of noble elements (as function of particle type, E and dE/dx)

Backgrounds

Expected Limit for 5.6 T fiducial ~ **1000 days**

-12 2X10

Maximize WIMP **Target mass** Self-shielding necessary

Two component outer detector

Expected background for 5.6 T fiducial ~ **1000 days**

Item	Mass	U	Th	⁶⁰ Co	⁴⁰ K	n/yr	ER	NR
	kg	mBq/kg	mBq/kg	mBq/kg	mBq/kg		cts	cts
R11410 PMTs	93.7	2.7	2.0	3.9	62.1	373	1.24	0.20
R11410 bases	2.7	74.6	29.1	3.6	109.2	77	0.17	0.03
Cryostat vessels	2,140	0.09	0.23	≈0	0.54	213	0.86	0.02
OD PMTs	122	1,507	1,065	≈0	3,900	20,850	0.08	0.02
Other components	-	-	-	-	-	602	9.5	0.05
Total components							11.9	0.32
Dispersed radionuclides (Rn, Kr, Ar)							54.8	-
¹³⁶ Xe 2νββ							53.8	-
Neutrinos (v-e, v-A)							271	0.5
Total events							391.5	0.82
WIMP background events							1.96	0.41
(99.5% FR discrimination, 50% NR acceptance)							1.50	0.41
Total ER+NR background events							2.3	37

LZ holds the promise to be the ultimate WIMP search experiment, limited by neutrino induced background. Projected commissioning in Feb. 2019