Particle acceleration in η Carinae: the Expected and Unexpected

Matteo Balbo, ISDC, Switzerland

Roland Walter, ISDC, Switzerland

28th Texas Symposium on Relativistic Astrophysics

13-18 December 2015, Geneve
Particle acceleration in ηCarinae: the Expected and Unexpected

η Carinae

Bubble nebula - NGC 7635

10^{14} \text{ cm}

10^{12} \text{ eV/cm}^3, 1 \text{ G}, 10^9 \text{ cm}^{-3}

10^{20} \text{ cm}

1 \text{ eV/cm}^3, \mu \text{G}? , 300 \text{ cm}^{-3}

O6.5III
Particle acceleration in η Carinae: the Expected and Unexpected

Colliding Wind Binaries are predicted to be potential sites of HE γ-ray emission through strong shocks due to colliding winds

Particle acceleration in η Carinae: the Expected and Unexpected

Colliding Wind Binaries are predicted to be potential sites of HE γ-ray emission through strong shocks due to colliding winds

Particle acceleration in η Carinae: the Expected and Unexpected

Colliding Wind Binaries are predicted to be potential sites of HE γ-ray emission through strong shocks due to colliding winds

Who is η Car?

\[\dot{M} \ll 10^{3.5} \frac{M}{\text{yr}} \]

\[L_{\text{wind}} \approx 2000 L_\odot \]

\[L_e \approx 50 L_\odot \]

Humphrey & Davidson limit

Formation of the «Homonculus»

Corcoran (2015)

Who is η Car?

Who is η Car?

L_{π0} \approx 10 L_☉
The physics behind η Car

Shock acceleration is counterbalanced by:

- e^- IC scattering
- p^+ interaction

Comparing the Fermi acceleration time scale to the cooling times provides:

- Spectrally independent from the orbital phase

Spectral fit parameters:

- Acceleration and cooling ("one zone")

Eichler & Usov, 93; A&A (2011) 526, 57
Our analysis of ηCar

From 2008 August 4 to 2015 July 1
ST: v10r0p5
IRF: P8R2_SOURCE_V6
Catalogue: 3FGL

E: 300 MeV - 300 GeV
ROI: ~15°
Sources: ~171 (1 ext.)
Our analysis of ηCar

From 2008 August 4 to 2015 July 1
ST: v10r0p5
IRF: P8R2_SOURCE_V6
Catalogue: 3FGL

E: 300 MeV - 300 GeV
ROI: ~15°
Sources: ~171 (1 ext.)

Sistematic uncertaintes:
★ Presence of a variable HE source closer than θ_{ref} ($J1043.6-5930$)
Our analysis of ηCar

From 2008 August 4 to 2015 July 1
ST: v10r0p5
IRF: P8R2_SOURCE_V6
Catalogue: 3FGL

E: 300 MeV - 300 GeV
ROI: ~15°
Sources: ~171 (1 ext.)

Sistematic uncertainties:
★ Presence of a variable HE source closer than θ_ref (J1043.6-5930)
★ Galactic diffuse emission model
ηCar γ-ray lightcurve

Energy bin 1 (E: 0.3-0.95 GeV)

Energy bin 2 (E: 0.95-3 GeV)

Energy bin 3 (E: 3-9.5 GeV)

Energy bin 10 (E: 10-300 GeV)

0.3-0.95 GeV

0.95-3 GeV

3-9.5 GeV

10-300 GeV

flux [ph s⁻¹ cm⁻²]
Shock acceleration is counterbalanced by:

- e⁻ IC scattering
- p interaction

Comparing the Fermi acceleration time scale to the cooling times provides:

- Roughly independent from the orbital phase

Spectral fit parameters:

- Acceleration and cooling ("one zone")

Eichler & Usov, 93; A&A (2011) 526, 57

The X-ray emission varies by \(\sim 4 \)

The sub-GeV emission varies by < 2

Above 10 GeV emission varies by > 3

The pionization conversion efficiency \(\sim D^{-1} \)

1. **gamma-ray pulsar & PWN** *(Abdo et al, 2010)*
 - Variability excludes the PWN
 - Pulsar not detected by Chandra
 - Coincidence probability \(\sim 10^{-5} \)

2. **external shock** *(Ohm et al, 2010)*
 - Does not explain more than 20% of the 50 keV component.
 - Cannot explain the >10 GeV component, *nor its variability*
 - A contribution is possible

3. **two electron populations** *(Bednarek & Pabich, 2011)*
 - Acceleration parameters vary along the shock surface resulting in a smooth electron spectrum
 - Observed variations of the cutoff energy are much smaller than predicted

4. **electrons & hadrons** *(Eichler & Usov, 1993; Farnier & Walter, 2011)*
Energetics

Observations

- In the **sub-GeV** the orbital modulation is < 2
- Above **10 GeV**, the flux variability is > 3

Wind collision simulations

- The total electron spectrum is smooth
- The **mechanical luminosity** available to accelerate **electrons** is **not** strongly **modulated**
- The π^0 decay emission **depends** on the **density** and could be **modulated** in a **similar** way as the **X-ray** emission

Energetics

- **Thermal X-rays**: $25 \, \text{L}_\odot$ (2% L_{shock})
- **Synchrotron**: $< 0.1 \, \text{L}_\odot$
- **Electron acceleration**: $50 \, \text{L}_\odot$ (6% L_{mec})
- **π^0 emission**: $10 \, \text{L}_\odot$ (2% L_{mec})

- **η Carinae** shows evidences for **electronic** and **hadronic** acceleration
- **Proton cutoff energy** $\approx 10^{13}$ eV, **higher than measured in middle aged SNR**
- **Efficiency** of particle **acceleration** $\sim 5\%$ (Spitkovsky’s simulations: 10%)

ηCar is a Large Hadron Collider
• We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar
• There are two main source of systematic errors:
 • Diffuse galactic model contribution
 • Variable source @ HE closer than θ_{REF}
• The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)

...nevertheless
• We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar

• There are two main source of systematic errors:
 • Diffuse galactic model contribution
 • Variable source @ HE closer than θ_{REF}

• The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)
• We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar

• There are two main sources of systematic errors:
 • Diffuse galactic model contribution
 • Variable source @ HE closer than θ_{REF}

• The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)
• We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar
• There are two main source of systematic errors:
 • Diffuse galactic model contribution
 • Variable source @ HE closer than θ_{REF}
• The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)
• We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar

• There are two main sources of systematic errors:
 • Diffuse galactic model contribution
 • Variable source @ HE closer than θ_{REF}

• The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)
X-ray intensity much bigger on the last periastron (Corcoran et al. 2015) suggesting structural changing in the dueling wind

No significant variation on the Γ index, statistically consistent with a constant $\sim -2.25\pm0.17$ (BINNED) ; 2.34 ± 0.14 (UNBINNED)

“Anomalous” (not straightforward) behavior during last periastron
X-ray intensity much bigger on the last periastron (Corcoran et al. 2015) suggesting structural changing in the dueling wind.

No significant variation on the Γ index, statistically consistent with a constant $\sim -2.25\pm0.17$ (BINNED); 2.34 ± 0.14 (UNBINNED).

“Anomalous” (not straightforward) behavior during last periastron.
...staying hungry and staying foolish...

ASTROGAM

Energy [GeV]

$E_2 dN/dE$ [erg s$^{-1}$ cm$^{-2}$]

Stellar emission $5 \times 10^6 L_\odot$

Thermal infrared & radio emission (not shown)

Synchrotron

Inverse Compton

$\nu \nu^0$ decay

$\gamma \gamma$ abs.

CTA

HESS

Fermi LAT

INTEGRAL

ASDC

Université de Genève
...staying hungry and staying foolish...

ASTROGAM

\[E^2 \frac{dN}{dE} \text{ [erg s}^{-1}\text{cm}^{-2}] \]

Energy [GeV]
...staying hungry and staying foolish...