

Matteo Balbo, ISDC, Switzerland

Roland Walter, ISDC, Switzerland

28th Texas Symposium on Relativistic Astrophysics

13-18 December 2015, Geneve

Particle acceleration in nCarinae: SDC the Expected and Unexpected

Particle acceleration in nCarinae: SDC the Expected and Unexpected

Colliding Wind Binaries are predicted to be potential sites of HE γray emission through strong shocks due to colliding winds

Eichler & Usov (1993) ApJ 402, 271

Particle acceleration in nCarinae: ISDC the Expected and Unexpected

Colliding Wind Binaries are predicted to be potential sites of HE γray emission through strong shocks due to colliding winds

Eichler & Usov (1993) ApJ 402, 271

Particle acceleration in ηCarinae: the Expected and Unexpected

Colliding Wind Binaries are predicted to be potential sites of HE γray emission through strong shocks due to colliding winds

Eichler & Usov (1993) ApJ 402, 271

Who is ηCar?

A&A (2008) 477, L29 A&A (2010) ApJ, 718 L161

Who is ηCar?

 $L_{\pi 0} pprox 10~L_{\odot}$

in preparation

The physics behind ηCar

Our analysis of nCar

From 2008 August 4 to 2015 July 1

ST: *v10r0p5*

IRF: P8R2_SOURCE_V6

Catalogue: 3FGL

E: 300 MeV - 300 GeV

ROI: ~15°

Sources: ~171 (1 ext.)

0.3-0.95 GeV

0.95-3 GeV

3-9.5 GeV

10-300 GeV

Our analysis of nCar

From 2008 August 4 to 2015 July 1

ST: *v10r0p5*

IRF: P8R2_SOURCE_V6

Catalogue: 3FGL

E: 300 MeV - 300 GeV

ROI: ~15°

Sources: ~171 (1 ext.)

0.95-3 GeV

3-9.5 GeV

10-300 GeV

Sistematic uncertaintes:

★ Presence of a variable HE source closer than θ_{ref} (*J1043.6-5930*)

Our analysis of ηCar

From 2008 August 4 to 2015 July 1

ST: *v10r0p5*

IRF: P8R2_SOURCE_V6

Catalogue: 3FGL

E: 300 MeV - 300 GeV

ROI: ~15°

Sources: ~171 (1 ext.)

0.95-3 GeV

3-9.5 GeV

10-300 GeV

Sistematic uncertaintes:

- ★ Presence of a variable HE source closer than θ_{ref} (*J1043.6-5930*)
- ★ Galactic diffuse emission model

ηCar γ-ray lightcurve

0.0

0.2

0.4

0.6

phase

8.0

1.0

0.6

phase

8.0

0.4

0.0

0.2

1.0

ηCar γ-ray lightcurve

The **X-ray** emission varies by ~ 4

The **sub-GeV** emission varies by < 2

A&A (2011) 526, A57

Above **10 GeV** emission varies by > 3

Fermi acceleration time scale

$$t_{acc} = \frac{R_L}{c} \left(\frac{c}{V}\right)^2$$

$$\gamma_{max,e} = \sqrt{\frac{3\pi ec^2}{\sigma_T \beta^2}} \sqrt{\frac{B \cdot R^2}{L}} \frac{V}{c} \approx \sqrt{\frac{B_{1G} \cdot R_{10^{14}cm}^2}{L_{5 \cdot 10^6 L_{\odot}}}} V_{10^3 km/s} \times 3 \cdot 10^4$$

The pionization conversion efficiency ~ D⁻¹

Eichler & Usov (1993) ApJ, 402, 271

Proposed models

gamma-ray pulsar & PWN (Abdo et al, 2010)
 Variability excludes the PWN
 Pulsar not detected by Chandra
 Coincidence probability ~ 10⁻⁵

2. **external shock** (Ohm et al, 2010)

Does not explain more than 20% of the 50 keV component.

Cannot explain the >10 GeV component, nor its variability A contribution is possible

4. electrons & hadrons (Eichler & Usov, 1993; Farnier & Walter, 2011)

Energetics

Observations

- \uparrow In the **sub-GeV** the orbital modulation is < 2
- \checkmark Above **10 GeV**, the flux variability is > 3

Wind collision simulations

- The total electron spectrum is smooth
- The mechanical luminosity available to accelerate electrons is not strongly modulated
- The πº decay emission depends on the density and could be modulated in a similar way as the X-ray emission

Energetics

★ Thermal X-rays:25 L_⊙ (2% L_{shock})

★ Synchrotron: < 0.1 L_⊙

★ Electron acceleration: 50 L_⊙ (6% L_{mec})

 \star π⁰ emission: 10 L_☉ (2% L_{mec})

- * η Carinae shows evidences for electronic and hadronic acceleration
- **Proton cutoff energy** ≥10¹³ eV, higher than measured in middle aged SNR
- **Efficiency** of particle **acceleration** ~ **5%** (Spitkovsky's simulations: 10%)

ηCar is a Large Hadron Collider

- We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar
- There are two main source of systematic errors:
 - Diffuse galactic model contribution
 - Variable source @ HE closer than θ_{REF}
- The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)

...nevertheless

- We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar
- There are two main source of systematic errors:
 - Diffuse galactic model contribution
 - Variable source @ HE closer than θ_{REF}
- The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)

- We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar
- There are two main source of systematic errors:
 - Diffuse galactic model contribution
 - Variable source @ HE closer than θ_{REF}
- The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)

- We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar
- There are two main source of systematic errors:
 - Diffuse galactic model contribution
 - Variable source @ HE closer than θ_{REF}
- The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)

- We clearly have γ-ray emission (at all energies) from a region coincident with the nominal position of ηCar
- There are two main source of systematic errors:
 - Diffuse galactic model contribution
 - Variable source @ HE closer than θ_{REF}
- The variation of the sub-GeV and super-GeV component are in agreement with the simulation and the model (IC and π^0)

Inhomogeneities

- X-ray intensity much bigger on the last periastron
 (Corcoran et al. 2015) suggesting structural changing in the dueling wind
- No significant variation on the Γ index, statistically consistent with a constant ~ -2.25+-0.17 (BINNED); 2.34+-0.14 (UNBINNED)
- "Anomalous" (not straightforward) behavior during last periastron

Inhomogeneities

- X-ray intensity much bigger on the last periastron
 (Corcoran et al. 2015) suggesting structural changing in the dueling wind
- No significant variation on the Γ index, statistically consistent with a constant ~ -2.25+-0.17 (BINNED); 2.34+-0.14 (UNBINNED)
- "Anomalous" (not straightforward) behavior during last periastron

... staying hungry and staying foolish... IsDC

... staying hungry and staying foolish... "ISDC

... staying hungry and staying foolish... isDC

