Rapid variations of polarisation in X-ray binaries
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X-ray Binary Jets

Black hole XB: GRO J1655-40 Neutron star XB: Sco X-1

Tingay et al. 1995 Fomalont et al. 2001

Radio emission: - is synchrotron in nature
- unambiguously originates in collimated outflows (2 types of jet)

The approximate spectrum of a steady, hard state jet:
TN
Optically thick : Optically thin (inner regions)

log F,

Radio
 The total jet luminosity is highly dependent on the position of the spectral break(s)

» How does the jet spectrum evolve during outbursts? - Time evolution (impossible for AGN)
« What are the conditions in the inner regions of the jets? - Polarisation



Polarisation of optically thin synchrotron emission
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* In NIR, the observed emission of X-ray binaries can be highly polarised
- Depends on magnetic field configuration ~ FL P, — f& = f L = awin
p+7/3 5/3 — Qtthin

 Ordered field - up to ~80% polarised

» Tangled field = ~ no net polarisation (low f)



Jet emission in the optical/NIR
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Jet break seen in GX 339-4 in mid-IR in the hard state — the break is variable in time
Gandhi et al. 2011



We need polarisation data in the hard state
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- We have been monitoring GX 339-4
with the Faulkes Telescope South

—> Optical drop when the source left the
hard state as jet is quenching
(Cadolle Bel et al. 2011)

- This happens in every outburst in which
there are state transitions (Buxton et al.
2012)

- The infrared component is highly
variable (Casella et al. 2010, Kalamkar
et al. 2015)
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VLT observations of GX 339-4 In the hard state

- We observed GX 339-4 during a hard state with VLT+ISAAC

- We detect significant, variable linear polarisation in the near-infrared (when the jet dominated)
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Resolved radio jet of GX 339-4 (Gallo et al. 2004)
We infer a predominantly tangled, variable magnetic field near the jet base (1 — 3 % polarised)
—> The PA of polarisation is ~ perpendicular to the PA of the resolved radio jet

- The magnetic field is approximately parallel to the jet axis



Polarisation of neutron star XRBs
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NIR spectropolarimetry
(Shahbaz et al. 2008)

stronger at low
frequencies

All detections are

The results imply a predominantly tangled, likely
variable magnetic field near the jet base

Cyg X-2 has an infrared
excess (Wang & Wang
2014)

The radio jet of Cyg X-2 |

has now been resolved
(Spencer et al. 2013)
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A muL

We took timé
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A multiwavelength campaign on Cyg X-2

We took time-resolved NIR polarisation observations with WHT + LIRIS of
Cyg X-2, simultaneously with X-ray (Swift and RXTE) in 2010

The X-ray data suggest the source was in the normal branch at the time of our
observations - transient jets are launched during this state
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A multiwavelength campaign on Cyg X-2

We took time-resolved NIR polarisation observations with WHT + LIRIS of

Cyg X-2, simultaneously with X-ray (Swift and RXTE) in 2010
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A multiwavelength campaign on Cyg X-2

We took time-resolved NIR polarisation observations with WHT + LIRIS of

Cyg X-2, simultaneously with X-ray (Swift and RXTE) in 2010
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BH XRBs In qwescence have jets
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V404 Cyg has flat radio spectrum  spectrum, high rms variability (20 — 30%)
(Gallo et al. 2005, 2007) with Optical, NIR, WISE mid-IR (3.4 to 22 mu)
Instabilities (Rana et al. 2015) power-law with index -1.4 (Shahbaz et al. 2013)

Tot - : Could be a thermal, possibly Maxwellian
CIS EXISLIN QUIESCENCE | jistribution of electrons in a weaker jet

Jet break is seen by Plotkin et al. 2015




New results from guiescent jets

We took NIR polarisation observations with WHT + LIRIS of
Swift J1357.2—-0933 in quiescence

« The synchrotron emission is polarised at a level of 8.0 £ 2.5 % (J to K)
(a detection of intrinsic polarisation at the 3.20 level)

 The mean magnitude and rms variability of the flux agree with previous
observations (fractional rms of 15-21 per cent)

« These properties imply a continuously launched (stable on long timescales),
highly variable (on short timescales) jet, which has a moderately tangled
magnetic field close to the jet base



And flnally....
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Shahbaz et al. in prep: time-resolved optical polarimetry of V404 during brightest
flaring episodes of the 2015 outburst, with Telescopio Nazionale Galileo (TNG)

A polarisation flare is seen just before a bright optical & X-ray flare

3 + (d) -
m = -
¥ ]
- o 'o'.l )
«© - . o * * . -1
:.:..i ;_' "_,_'. "3 T
™~ -
L , ]
-3.2 =-3.4 -3.6 -4
A r (mag)
[ T T T ]
+
m - -
= % "|
: -.' e
© Sl .
. . "- » ." |.
'..o "' “-i- HES
* o "
~ - s
L , |
2 6 10
LY

4 26 s

PRESS

B P

see also

ATel #7674,
#7678, #7696

Position angle implies the B field is perpendicular to the jet axis (known from
radio; Miller-Jones et al. in prep) = internal shocks?



Conclusions

NIR-optical synchrotron emission from jets in X-ray binaries is polarised
The results so far suggest:
Near the jet base the magnetic field is probably:
-> generally turbulent (only partially ordered) and rapidly changing
-> parallel to the jet axis (but perpendicular in V404 Cyg: shocks?)
Open questions:
= What are the timing properties of the variable polarisation?
-> Does polarisation correlate with anything in the inflow?

- What drives the magnetic field changes?

More data and more models are needed to explain the observations

Thanks for listening



