Collisions of Spinning Particles in a Schwarzschild Background

Benjamin Koch
in collaboration with Cristobal Armaza, and Maximo Bañados
bkoch@fis.puc.cl

\[G_{\mu\nu} - \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \]

\(^a\) PUC, Chile

Texas Symposium Dez 2015
Background:
High center of mass energies are interesting (new physics)

- Black holes can in principle produce $E_{CM} \to \infty$, but one needs
- Extremely rotating black hole
- Collision at the horizon
- Angular momentum l: critical

\Rightarrow Unlikely, hard to observe
Idea:
Let the particle rotate and the black hole be spherical

- Can one produce $E_{CM} \to \infty$?
 If yes:
- Has the collision to be at the horizon?
- Has the angular momentum l: to be critical?
- Is there a notion of extremely rotating particle?

\Rightarrow Solve Papapetru equations and see ...
Result-plot

Result-1:

E_{CM} divergent for yellow region
Result-summary:

- One can produce $E_{CM} \rightarrow \infty$
- Even outside the horizon
- Even for range of angular momentum
- Is there a notion of extremely rotating particle? \Rightarrow Yes, kind of.

\Rightarrow More interesting stuff found: see arXiv:1511.04429, or poster, or ask

Time is up, thank you!