How the obs. quantities of strong grav. lens effect depend on BH's mass and spin

SAIDA Hiromi

(Daido Univ., Japan)

* Under preparation for paper submission

28th Texas Sympo. 2015.Dec.14-18 at Geneva, Swiss (Dec.17, talk)

1. Introduction : Basic idea

1.1 From candidate to itself

- Best observational knowledge of BH at present \rightarrow BH candidates by Newtonian gravity

$$
\mathbb{\Downarrow} \text { Large Gap in Physics !! }
$$

- BH is a general relativistic (GR) object \rightarrow The method to find "BH itself" is at least a direct detection of the GR effect of BH . What is it? How can we do it?

1.2 Meaning of BH detection in GR context

- Theoretical (mathematical) fact in GR

Uniqueness Theorem

Asymptotic flat BH spacetime is uniquely specified by 3 parameters:
M_{BH} : mass
J_{BH} : spin angular momentum
Q_{BH} : electric charge
$\diamond Q_{\mathrm{BH}}=0$ is expected for real situations.
$\rightarrow \mathrm{BH}$ is specified by M_{BH} and J_{BH}. (Kerr BH)

- Define the meaning of "direct" detection of BH

BH Detection is ...

To measure the parameters M and χ by detecting the GR effect of BH.

\diamond Mass in length scale: $M=\frac{G M_{\mathrm{BH}}}{c^{2}}[\mathrm{~cm}]$
\diamond Dimensionless spin parameter: $\chi=\frac{a}{M}$ [no-dim]
(usual spin parameter: $\left.a=J_{\mathrm{BH}} /\left(M_{\mathrm{BH}} c\right)[\mathrm{cm}]\right)$
\diamond Kerr BH horizon radius: $r_{\mathrm{BH}}=M\left[1+\sqrt{1-\chi^{2}}\right]$

$$
\Rightarrow 0 \leq \chi<1
$$

1.3 GR effect of BH as our target

- Target : Strong Gravitational Lens (SGL) effect
- An ideal situation we want to observe:
\diamond Clear environment around BH except the source
\diamond Burst-like and spherical emission
seen from the source

Basic fact in our situation

Observing two quantities of SGL

$$
\begin{cases}\Delta t_{\text {obs }} & : \text { Time delay } \\ \mathcal{R}_{\text {obs }}=\frac{F_{1}}{F_{0}}: & \text { Flux ratio }\end{cases}
$$

gives the BH parameters (M, χ),
if the inclination angle $\theta_{\text {obs }}$,
the source's motion ($\vec{x}_{\mathrm{s}}, \vec{u}_{\mathrm{s}}$),
and the source's emission spectrum $I_{\mathrm{s}}\left(\nu_{\mathrm{s}}\right)$
are known.
\rightarrow What should we do with observation?

- Steps for extracting (M, χ) from observation.
(a) Theory:

Prepare numerically the date set of $\left(\Delta t_{\text {obs }}, \mathcal{R}_{\text {obs }}\right)$ with various values of $\left(M, \chi ; \theta_{\text {obs }}, \vec{x}_{\mathrm{s}}, \vec{u}_{\mathrm{s}}, I_{\mathrm{s}}\right)$.
(b) Observation:

Observe the target (BH candidate) and take the data ($\Delta t_{\text {obs }}, \mathcal{R}_{\text {obs }}$) as many as possible.
(c) Comparison:

Make the table from (a) and (b).
\rightarrow See the next page \ldots
\diamond If this table is obtained by steps (a), (b) and (c),

obs. data $\left(\Delta t_{\text {obs }}, \mathcal{R}_{\text {obs }}\right)$	corresponding theoretical data by step (a) $(M, \chi ; \mathrm{C}), \mathrm{C}=\left(\theta_{\text {obs }}, \vec{x}_{\mathrm{s}}, \vec{u}_{\mathrm{s}}, I_{\mathrm{S}}\right)$
$(1.32,0.27)$	$\left(9.0,0.1 ; \mathrm{C}_{0}\right),\left(3.2,0.8 ; \mathrm{C}_{0}^{\prime}\right),\left(5.8,0.8 ; \mathrm{C}_{0}^{\prime \prime}\right), \cdots$
$(4.05,0.03)$	$\left(3.2,0.8 ; \mathrm{C}_{1}\right),\left(2.1,0.9 ; \mathrm{C}_{1}^{\prime}\right),\left(1.9,0.5 ; \mathrm{C}_{1}^{\prime \prime}\right), \cdots$
$(7.94,1.04)$	$\left(0.8,0.3 ; \mathrm{C}_{2}\right),\left(7.4,0.9 ; \mathrm{C}_{2}^{\prime}\right),\left(3.2,0.8 ; \mathrm{C}_{2}^{\prime \prime}\right), \cdots$
$(9.28,0.44)$	$\left(3.2,0.8 ; \mathrm{C}_{3}\right),\left(4.5,0.5 ; \mathrm{C}_{3}^{\prime}\right),\left(1.9,0.5 ; \mathrm{C}_{3}^{\prime \prime}\right), \cdots$

\rightarrow then we suggest $(M, \chi)=(3.2,0.8)$
This talk discusses the steps (a) and (b)

2. SGL's Observable Quantities

2.1 Setup for numerical calculation

- Input parameters: $M, \chi, \theta_{\text {obs }}, \vec{x}_{\mathrm{s}}, \vec{u}_{\mathrm{s}}, I_{\mathrm{s}}\left(\nu_{\mathrm{s}}\right)$
- Output parameters: $\Delta t_{\text {obs }}, \mathcal{R}_{\text {obs }} \leftarrow \mid$ calculate
- Back Ground: Kerr spacetime these quant.
$\mathrm{d} s^{2}=g_{t t} \mathrm{~d} t^{2}+2 g_{t \varphi} \mathrm{~d} t \mathrm{~d} \varphi+g_{r r} \mathrm{~d} r^{2}+g_{\theta \theta} \mathrm{d} \theta^{2}+g_{\varphi \varphi} \mathrm{d} \varphi^{2}$

$$
\begin{cases}g_{\mu \nu}=g_{\mu \nu}(r, \theta ; M, \chi) & \text { determined by } M, \chi \\ x^{\mu}=(t, r, \theta, \varphi) & \text { Boyer-Lindquist coord }\end{cases}
$$

2.2 Steps to calculate $\left(\Delta t_{\text {obs }}, \mathcal{R}_{\text {obs }}\right)$

Step1. Solve Null Geodesic Eq. which connects the source and observer (shooting) \rightarrow Time delay Δt is obtained.

Step2. Solve Geodesic Deviation Eq.
\rightarrow Visible solid-angle $\Delta \Omega$ is obtained.
Step3. Specify the source's velocity \vec{u}_{s} and specific intensity $I_{\mathrm{s}}\left(\nu_{\mathrm{s}}\right)\left[\mathrm{erg} / \mathrm{s} \mathrm{cm}^{2} \mathrm{~Hz} \Omega\right]$. \rightarrow Flux ratio $\mathcal{R}_{\text {obs }}$ is obtained.

2.3 Step1: Null geodesics and $\Delta t_{\text {obs }}$

- Some notes on Kerr BH :
$\diamond \mathrm{BH}$ horizon at $t=$ const. is the sphere of radius r_{BH}

$$
r_{\mathrm{BH}}=M\left[1+\sqrt{1-\chi^{2}}\right][\mathrm{cm}]
$$

\diamond Ergo-surface : $r_{\mathrm{erg}}=M\left[1+\sqrt{1-\chi^{2} \cos ^{2} \theta}\right]$ \rightarrow Radial motion ($\theta, \varphi=$ const.) is impossible in the ergo-region $r<r_{\text {erg }}$. \rightarrow Any object rotates with BH spin in " $r \leq r_{\mathrm{erg}}$ ".
\diamond Geodesic motion is "three-dimensional" in general, except for on the equatorial plane $\theta=\pi / 2$.

Some examples of light rays:
$\mathrm{M}=1.0$
$\chi=0.8$
$\mathrm{r}_{\mathrm{s}}=2.2 \mathrm{r}_{\mathrm{BH}}$
$\theta_{\mathrm{S}}=0.7 \pi$
$\varphi_{\mathrm{s}}=0$
$\mathrm{r}_{\mathrm{obs}}=100 \mathrm{r}_{\mathrm{BH}}$
$\theta_{\text {obs }}=9 \pi / 31$
$\varphi_{\text {obs }}=\pi / 12$
Higher winding rays are omitted.

- Time delay $\Delta t_{\text {obs }}$ is read from the " r - t plot" of the primary ray W_{0} and secondary ray W_{1}.

- Total Doppler effect: $\frac{\nu_{\mathrm{s}}}{\nu_{\mathrm{obs}}}=\frac{k_{\mu} u_{\mathrm{s}}^{\mu}}{k_{\mu} u_{\mathrm{obs}}^{\mu}} \quad\left(k^{\mu}:\right.$ null vector $)$

2.4 Steps2 \& 3: Geodesic deviation and $R_{\text {obs }}$

- Geodesic deviation eq. \Rightarrow Cross section of beam \Rightarrow Visible solid-angle $\Delta \Omega_{\text {obs }} \Rightarrow$ Obs. Flux $F_{\text {obs }}$

2.5 Ex. of numerical results: preliminary

- Parameters of next figures:
- Configuration:
- BH: $(M, \chi)=(1.0,0.8)$
- Source velocity: $u_{\mathrm{s}}^{\mu}=(1.49,0,0,0.05)$
- Inclination: $\theta_{\text {obs }}=\frac{12}{31} \pi$
- Line emission: $I_{\mathrm{s}}\left(\nu_{\mathrm{s}}\right)=\delta\left(\nu_{\mathrm{s}}-\nu_{\mathrm{c}}\right), \nu_{\mathrm{c}}$ is const.
- Emission at $\nu_{\mathrm{c}} \rightarrow$ Obs. with $\nu_{\mathrm{obs}(0)}$ and $\nu_{\text {obs }(1)}$
- Calculate $\Delta t_{\mathrm{obs}}, F_{\mathrm{obs}(1)} / F_{\mathrm{obs}(0)}, \nu_{\mathrm{obs}(1)} / \nu_{\mathrm{obs}(0)}$ at every azimuthal angle of obs. $\varphi_{\text {obs }}$ \diamond coloring of $\varphi_{\text {obs }}:$| $\varphi_{\text {obs }}$ | $\mathbf{0} \longrightarrow \mathbf{2 \pi}$ |
| :---: | :---: |
| color | $\mathbf{R} \rightarrow \mathrm{G} \rightarrow \mathbf{B}$ |

\diamond hor. $: \Delta t_{\text {obs }} / M —$ ver. $: F_{1} / F_{0}($ left $), \nu_{1} / \nu_{0}($ right $)$

$v_{(1)} / v_{(0)}$

- Replace with $u_{\mathrm{s}}^{\mu}=(2.7,-1,0,0)$ the other parameters are the same

\diamond Various values of $\mathcal{R}_{\text {obs }}$ is possible!
\diamond Typically $O\left(\Delta t_{\text {obs }}\right) \sim O\left(\pi r_{\mathrm{s}}\right)$ ($=10$ for this case)
\Rightarrow There should be the case which is detectable by the present telescope capability!

3. SGL in the Light Curve

3.1 Indication by sec. 2

- The ray W_{0} passes no causitic.
- The ray W_{1} passes
one caustic.
$r-t$ plot of rays

$\mathrm{M}=1.0$
$\chi=0.8$
$\mathrm{r}_{\mathrm{s}}=2.2 \mathrm{r}_{\mathrm{BH}}$
$\theta_{\mathrm{s}}=0.7 \pi$
$\varphi_{\mathrm{s}}=0$
$\mathrm{r}_{\mathrm{obs}}=100 \mathrm{r}_{\mathrm{BH}}$
$\theta_{\text {obs }}=9 \pi / 31$
$\varphi_{\text {obs }}=\pi / 12$
\rightarrow The effect of caustic on the light curve may be important for the observation.

3.2 Gouy phase shift: wave optics issue (not GR)

Phase shift of waves when passing the caustic (an interference effect)
\diamond positive freq. mode
\rightarrow phase shift by $-\pi / 2$
\diamond negative freq. mode
\rightarrow phase shift by $+\pi / 2$
\Rightarrow ex. $\cos (\omega t) \leftrightarrow \sin (\omega t)$

For each beam [cross section] $=0$

\Rightarrow This is the Hilbert transformation of wave form.

3.3 Expected feature of light curve

- Gouy Phase Shift \Leftrightarrow Hilbert trans. of wave form
- Observed Flux $F_{\text {obs }} \propto\left|E_{\text {obs }}\right|^{2}$
($E_{\text {obs }}$: amplitude)

Principle of observation
Find the GPS (Gous Phase Shifted) light curve from the time series data taken by a telescope.
Then, the delay $\Delta t_{\text {obs }}$ and ratio $\mathcal{R}_{\text {obs }}$ are obtained.

4. Summary

- "Direct" BH detection is to measure M, χ through GR effects.
- Focus on the Strong Gravitational Lens (SGL)
- Obs. quantities ($\Delta t_{\text {obs }}, F_{1} / F_{0}$) seem to be detectable by the present telescope capability !? \rightarrow Already estimated for a radio telescope in Japan. How about X-ray telescope?
- Light curve \rightarrow the Gouy effect may appear.
- If $\nu_{(1)} / \nu_{(0)}$ is also an observable, it is useful.

