3D global GRRMHD simulation to test stability of thin disk around black hole

Bhupendra Mishra* Collaborators: Chris, P. Fragile**; C.L. Johnson**; Wlodek Kluźniak*

Region 'A' is radiation pressure dominated

$$
\boxed{T_{r\phi}=\alpha\,P_t}
$$

Shakura and Sunyaev, 1973

Radiation pressure dominated disk is thermally unstable Shakura and Sunyaev, 1976

Bath and Pringle, 1981

Thermal stability ?

Hirose et al 2009

Thermal instability

Global simulation setup

- Weakly magnetized thin disk (around non-rotating black hole)
- Opacity (absorption, scattering, thermal comptonization)
- M1 closure scheme *Sádowski et al 2013*
- Evolve GRRMHD equations

Global simulations

* Two resolutions with radiation pressure dominated disk

Mid plane density,
$$
\rho_0 = 10^{-3} \text{g cm}^{-3}
$$

RADPLR $(n_r, n_\phi, n_z) = (192 \times 32 \times 160)$
RADPHR $(n_r, n_\phi, n_z) = (192 \times 64 \times 160)$

Radiation pressure dominated disk \longrightarrow Collapses

Mishra et al (in preparation)

Grid and Boundary conditions Cylindrical coordinate in KS metric constant periodiclogarithmic grid logarithmic grid outflow BH outflow **outflow**

Cosmos++ (Anninos et al 2005)

Disk setup

Magnetic field

Constrained transport method to keep it divergence free

GRMHD+Radiation

$$
T^{\alpha\beta} = (\rho + \rho \varepsilon + P_{\text{gas}} + b^2) u^{\alpha} u^{\beta} + (P_{\text{gas}} + P_b) g^{\alpha\beta} - b^{\alpha} b^{\beta}
$$

$$
R^{\alpha\beta} = E u^{\alpha} u^{\beta} + F^{\alpha} u^{\beta} + F^{\beta} u^{\alpha} + \frac{E}{3} (g^{\alpha\beta} + u^{\alpha} u^{\beta})
$$

The gas temperature has been calculated using LTE equation

$$
P_{\text{tot}} = p_{\text{gas}} + p_{\text{rad}} = \frac{k_b \rho T_{\text{gas}}}{\mu} + \frac{1}{3} a_R T_{\text{gas}}^4
$$

$$
E = a_R T_{gas}^4
$$

$$
D\alpha\beta \qquad \frac{4}{L} \sum_{\alpha} \alpha_{\alpha} \beta \qquad \frac{1}{L} \sum_{\alpha} \alpha_{\alpha} \beta
$$

$$
R^{\alpha\beta} = \frac{4}{3} E_R u_R^{\alpha} u_R^{\beta} + \frac{1}{3} E_R g^{\alpha\beta}
$$

GRMHD+Radiation

Hybrid explicit-implicit scheme

1. Explicit HRSC method to update set of conserved variables

2. Implicit scheme to complete update accounting radiation source terms

> $A x = b$ A is a 12×12 matrix '*x'* and '*b'* are 12-dimensional vectors (equations for set of primitive fields)

Unstable disk

Radiation pressure dominated simulation

Unstable disk

Radiation pressure dominated simulation

Collapsing disk

Photo-sphere $T = 0$ **RADPHR** 6 4 $[rg1]$ 2 MassDensity (code units) $-1.e-19$ *0.4 rg*0 $2.e-20$ N $-5.e-21$ -4 $-1.e-21$ -6 $-2.e-22$ $T = 4448$ 5.e-23 6

RADPHR *vs* RADPLR

Heating *vs* cooling

Surface density

Collapse is not due to significant mass loss from disk

Conclusion

• Radiation pressure dominated geometrically thin and optically thick disks are thermally unstable

Merci !

Merci !

MRI Q values

GR Radiative MHD Equations

$$
g_{\mu\nu}R^{t\mu}R^{t\nu} = -\frac{8}{9}E_R^2 (u_R^t)^2 + \frac{1}{9}E_R^2 g^{tt}
$$

$$
R^{tt} = \frac{4}{3}E_R (u_R^t)^2 + \frac{1}{3}E_R g^{tt}
$$

Radiation energy density in radiation rest frame Four velocity of radiation rest frame

The radiation and fluid four velocity are projected into the space of normal observer

GR Radiative MHD Equations

$$
G^{\mu} = -\rho \left(\kappa_R^{\rm a} + \kappa^{\rm s}\right) R^{\mu\nu} u_{\nu} - \rho \left\{ \left[\kappa^{\rm s} + 4\kappa^{\rm s} \left(\frac{T_{\rm gas} - T_{\rm rad}}{m_e}\right) + \kappa_R^{\rm a} - \kappa_J^{\rm a} \right] R^{\alpha\beta} u_{\alpha} u_{\beta} + \kappa_P^{\rm a} a_R T_{\rm gas}^4 \right\} u^{\mu}
$$

$$
\partial_t D + \partial_i (DV^i) = 0
$$

\n
$$
\partial_t \mathcal{E} + \partial_i \left(-\sqrt{-g} T_t^i \right) = -\sqrt{-g} T_\beta^\alpha \Gamma_{t\alpha}^\beta - \sqrt{-g} G_t
$$

\n
$$
\partial_t \mathcal{S}_j + \partial_i \left(\sqrt{-g} T_j^i \right) = \sqrt{-g} T_\beta^\alpha \Gamma_{j\alpha}^\beta + \sqrt{-g} G_j
$$

\n
$$
\partial_t \mathcal{R} + \partial_i \left(\sqrt{-g} R_t^i \right) = \sqrt{-g} R_\beta^\alpha \Gamma_{t\alpha}^\beta - \sqrt{-g} G_t
$$

\n
$$
\partial_t \mathcal{R}_j + \partial_i \left(\sqrt{-g} R_j^i \right) = \sqrt{-g} R_\beta^\alpha \Gamma_{j\alpha}^\beta - \sqrt{-g} G_j
$$

\n
$$
\partial_t \mathcal{B}^j + \partial_i (\mathcal{B}^j V^i - \mathcal{B}^i V^j) = 0
$$

vector potential

$$
A_{\phi} = \frac{\sqrt{P_{\rm gas}} \sin\left(\frac{2\pi r_{\rm cyl}}{5h}\right)}{1 + e^{\Delta}},
$$

where

$$
\Delta = 10\left\{\frac{z^2}{h^2} + \left(\frac{h}{R-r_{\rm ms}}\right)^2 + -1\right\} \,,
$$