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Motivation

Why care about CMC hypersurfaces?

To “track” the radiation, one needs foliations which reach (J +). With
this scheme it is possible, using smooth spatial asymptotically null slices,
without the need of implementing larger grids and longer run times.

Why care about null-infinity (J +) compactification?

Artificial boundary conditions (BCs), and truncated spatial domains
generally introduce errors which are very difficult to deal with. Why not
work with a formulation which can totally remove this difficult?

Conformal methods are a good way to numerically study isolated systems with
strong gravity in the far field regime: Gravitational waves.
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Some previous works

Friedrich, 1981
Regular conformal Einstein’s field equations in vacuum. Newman &
Penrose’s spin-frame formalism of General Relativity.

Hübner, 1993; Frauendiener, 1998
Numerical implementations of Friedrich’s scheme. The first one, applied to
a spherically symmetric scalar field -as a companion of Christodolou’s
analytic work in 1991-; and the second one, to Einstein’s vacuum field
equations in 2D.

Moncrief & Rinne, 2009; Rinne 2010
Einstein’s conformal equations in the ADM formulation. CMC
hypersurfaces, spatial harmonic gauge condition and regularization of
constraints at J +. Spherically symmetric and axisymmetric codes.

Vañó, Husa & Hilditch, 2015
Einstein’s conformal equation in the GBSSN formulation and conformal Z4
equations. Unconstrained evolution for a spherically symmetric scalar field.
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This work in brief

Numerical implementation:

Tetrad formalism of General Relativity
+

Hypersurfaces with constant mean curvature (CMC)

 Bardeen, Sarbach
& Buchman, 2011

+

Self-gravitating massless spherical scalar field

No potential

Partially constrained evolution

Black hole surrounded by the scalar field
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Tetrad formalism on CMC hypersurfaces

Tetrads adapted to a CMC foliation

e0 =
1

α

(
∂t − β i∂i

)
,

ea = Ba
i∂i ,with a = 1, 2, 3 .

Generalized connection coefficients

Γαβγ := g(eα,∇eγ eβ) = −Γβαγ .

ab := Γb00, , ωb := −1

2
εb

cdΓcd0 ,

Kab := Γb0a , Nab :=
1

2
εb

cdΓcda .

Dα = eα: Directional derivative along
eα, with α = 0, 1, 2, 3.

In addition ab = Db (logα) .

Evolution of the tetrads on CMC
hypersurfaces

∑
t ,

i.e. K a
a = C := constant.
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Conformal transformations

Penrose, 1965: Conformal compactification.

We define a conformal factor to reach J + .

Ω =

{
positive , inside the domain

0 , at null-infinity

Under the present formalism,

eα = Ωẽα , Ba
i = ΩB̃a

i , α =
1

Ω
α̃ , ωb = Ωω̃b ,

Kab = ΩK̃ab − δabD̃0Ω , Nab = ΩÑab + εabcD̃cΩ .

The next step: Write Einstein’s equations, without symmetries, in terms of
these rescaled quantities. Already made in vacuum in the BSB scheme. So
we focus on the spherically symmetric case, with the scalar field.
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Scalar Field Matter Sources

Wave equation: �Φ = 0 , � := −gµν∇µ∇ν

with Tµν = (∇µΦ)(∇νΦ)− 1
2
gµνg

αβ(∇αΦ)(∇βΦ) .

Conformal transformation: Φ = Ωφ̃ , gµν = Ω2g̃µν .

⇒ �̃φ̃+ 1
6
R̃(4)φ̃ = 1

6Ω2 R
(4)φ̃ .

The factor R(4)

Ω2 actually is regular at J + .

Defining π̃ := D̃0φ̃ and χ̃ := D̃aφ̃, the wave equation can be rewritten as a
symmetric hyperbollic system of coupled PDEs.

D̃0φ̃ = ... , D̃0χ̃ = ... , D̃0π̃ = ... .
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Choice of the Gauge

Spherical symmetry: We introduce the compactified coordinate R = r Ω

We choose a gauge such that Ñab = 0, and the conformal spatial metric is
flat, with the form h̃ = dR2 + R2

(
dϑ2 + sin2 ϑdϕ2

)
.

So in this gauge, the only variables which survive are:

ãb =
1

α̃
∂R α̃x̂b , β i = b(t,R)x̂ i ,

K̃ab = − ∂Rb

α̃

xaxb
R2
− b

2α̃R
(δab − xaxb) .

(in the practice, we define the quantity ν̃ which parametrizes the rescaled

extrinsic curvature such that ˆ̃Kab = ν̃
[
xaxb
R2 − 1

2
(δab − xaxb)

]
) .
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Choice of the Gauge
Einstein field equations

The equations of the system

Evolution equations

D̃0ν̃ = −
K̃

3
ν̃ +

2

3α̃

(
α̃
′′ −

α̃′

R

)
−

4

3Ω

(
Ω′′ −

Ω′

R
+

K

2
ν̃

)
+ 8πGΩ2

σ̃R , Extrinsic curvature

D̃0φ̃ = π̂ − K̃
3
φ̃ ,

D̃0χ̃ = 1
α̃

(α̃π̂)′ −
(
ν̃ + 2K̃

3

)
χ̃− 3

2R
φ̃ν̃ − 1

2α̃
(α̃ν̃)′φ̃ ,

D̃0π̂ = 1
α̃R2 (α̃R2χ̃)′ − 2K̃

3
π̂ −

(
1
4
ν̃2 − 1

3
α̃′′
α̃
− 1

6
R(4)

Ω2

)
φ̃ ,

 Scalar field

where π̃ = D0φ̃ = π̂ + K̃φ̃
3

, χ̃ = ∂R φ̃. Also σ̃R , ρ̃, j̃R , σ̃c c are the source terms and R(4) the Ricci scalar,

depending on the scalar field φ̃,χ̃,π̂ and the conformal factor Ω.

Constraint equations

Ω

[
Ω′′ +

2

R
Ω′
]

=
3

2

[
Ω′2 −

(
K

3

)2
]

+
3

8
Ω2
ν̃

2 + 4πGΩ4
ρ̃, Hamiltonian constraint

Ω

[
α̃
′′ +

2

R
α̃
′
]

= −3Ω′
α̃
′ +

[
Ω′′ +

2

R
Ω′ −

9

4
Ων̃2

]
α̃ + 4πGΩ3(3ρ̃ + σ̃

c
c )α̃ , CMC slicing(

2

3
α̃K̃

)′
= (α̃ν̃)′ +

3

R
α̃ν̃ , Choice of the conformal factor

ν̃
′ +

3

R
ν̃ −

2

Ω
Ω′
ν̃ = −8πGΩ2 j̃R , Momentum constraint
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Treatment at null-infinity

The quantities Ω and α̃ require a special treatment at RJ+

Elliptic constraints are singular at RJ+ .

We approximate the solutions as polyhomogeneous truncated series:

Ω(R)|R→RJ +
≈

ni ,nj∑
i=1
j=0

ΩijR
i logj(R) , α̃(R)|R→RJ+

≈
ni ,nj∑
i=1
j=0

α̃ijR
i logj(R)

In vacuum, without symmetries, logarithmic terms are due to gravitational
radiation (Andersson & Chrusciel, 1994; Chrusciel et.al. 1995). In this
case they are due to scalar radiation.

Logarithmic terms arise in the series only from Ω41 and α̃31 on.

The coeff. Ω40 is related to the total mass of the system.
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Some specific configurations

Spatial domain: Rini = 1
4

to RJ+ = 1

Boundary conditions for the integration of Ham. and CMC constraints:

Initially set Rini = RAH (apparent horizon)

For the evolution, Rini 6= RAH , the inner boundary conditions are:

The value of Ω is determined from D̃0Ω = 1
3

(
ΩK̃ − K

)
.

The value of α̃ is frozen to its initial value.

The Misner-Sharp mass m(r(R), t), according to this scheme:

1− 2m

r
= 1− 2m

R/Ω
= −

[
b

α̃
+

R

Ω

(
ΩK̃

3
− K

3

)]2

+

[
1− R

Ω
Ω′
]2

,

which is useful for the monitoring of trapped surfaces.
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Numerical Methods

Evolution equations Hyperbolic eqs. for ν̃, φ̃, χ̃ and π̂

Evolve all equations as a system of four coupled PDEs

SBP differential operators D63 (Diener, Dorband, Schnetter, Tiglio, 2007)

Time integration: Runge-Kutta algorithm of 4th order

Ham. and CMC slicing constraints Elliptic eqs. for Ω and α̃

Rewrite each constraint as a system of two coupled PDEs

Shooting method: from RJ+ to the fitting point Rmid

from Rini to the fitting point Rmid

Matching: Newton-Raphson algorithm to find suitable BCs

Spatial integration: Runge-Kutta algorithm of 4th order

Conformal factor’s choice constraint ODE for K̃

Solve by a simple shoot from RJ+ to Rini

Asymptotic value K̃J+ is known (Bardeen, Sarbach & Buchman, 2011)
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Evolution in the Schwarszchild case

The initial data

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R

Initial values for the (physical) scalar field

φ
dφ/dR

π

A typical Gaussian pulse as an example of initial data. In the graph: amplitude
ΦA = 0.1, width ΦW = 0.05, gridpoints NR = 150 and resolution ∆R = 0.005.
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Conformal factor in the IVP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Ω
(R

)

R

Conformal factor in the IVP

ΦA=0.00
ΦA=0.09
ΦA=0.18
ΦA=0.27

 0.296

 0.298

 0.3

 0.302

 0.304

 0.306

 0.308

 0.31

 0.46  0.48  0.5  0.52  0.54  0.56  0.58

The conformal factor Ω for different amplitudes of the physical scalar field.
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Trapped surfaces in the IVP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

1-
2m

/r

R

Monitoring of trapped surfaces in the IVP

ΦA=0.00
ΦA=0.09
ΦA=0.18
ΦA=0.27

Quantity 1− 2m/r(R) as a function of the
amplitude of the physical scalar field.

Φ0 mJ+

0.00 0.5002029
0.09 0.6094814
0.18 0.9366961
0.27 1.4799783

Total mass in the
Initial Value Problem
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Evolution in the Schwarzschild case

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  0.5  1  1.5  2  2.5  3

L 1
(M

om
)

t

Evolution of the Schwarszchild case

∆R
0.5 x ∆R

0.25 x ∆R
0.125 x ∆R

0.0625 x ∆R

Convergence test for the momentum constraint.
Schwarzschild case using 5 different resolutions,

Code tested for the
evolution in the case
Φ0 = 0 (Schwarzschild),
with results that converge
between 3rd and 4th
order in the L1 norm.

Nx = 50,
∆R = 0.015,
CFL = 0.1.
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Final comments

Conclusions

We have taken important steps towards the first implementation of the
BSB scheme on CMC hypersurfaces.

We also have paid special attention to subtle details such as:
Analytical work which allow us to partially decouple constraints,
Singularities at RJ+ in the Elliptic constraints and application of the
polyhomogenous series.

We have obtained good results in the convergence tests for the IVP and
the evolution in the Schwarzschild case.

Prospects

Consider the evolution for the case when Φ0 6= 0 –almost ready, currently
in process of debugging to reach a reasonable convergence.

Apply this code to study some particular things:
Quasinormal modes, tail decays, etc.
Critical collapse (setting a strong scalar field),
Changing the physical scenario: AdS space-time, black hole with hair, etc.
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